OFFSET
1,4
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..719
FORMULA
EXAMPLE
Define S(n) to be the set of proper divisors of n.
a(2) = 1, since 2 is prime, S(2) = {1} and the product of S(2) is 1.
a(4) = 2, since S(4) = {1, 2}; S(2) = 1, hence we have (1 X 2) X 1 = 2.
a(6) = 6, since S(6) = {1, 2, 3}; 2 and 3 are primes p and both have S(p) = 1,
hence we have (1 X 2 X 3) X 1 X 1 = 6.
a(8) = 16, since S(8) = {1, 2, 4}; a(2) = 1, a(4) = 2,
therefore (1 X 2 X 4) X 1 X 2 = 16.
a(9) = 3, since S(9) = {1, 3}, a(3) = 1,
therefore (1 X 3) X 1 = 3.
a(10) = 10, since S(10) = {1, 2, 5};
a(2) = a(5) = 1, a(4) = 2,
therefore (1 X 2 X 5) X 1 X 1 = 10.
a(12) = 1728, since S(12) = {1, 2, 3, 4, 6};
a(2) = a(3) = 1, a(4) = 2, a(6) = 6,
therefore (1 X 2 X 3 X 4 X 6) X 1 X 1 X 2 X 6
= 144 X 12 = 1728.
MATHEMATICA
f[x_] := f[x] = Times @@ # * Times @@ Map[f, #] &@ Most@ Divisors[x]; Table[f[n], {n, 120}]
PROG
(PARI) ali(n) = setminus(divisors(n), Set(n));
a(n) = my(list = List(), v = [n]); while (#v, my(w = []); for (i=1, #v, my(s=ali(v[i])); for (j=1, #s, w = concat(w, s[j]); listput(list, s[j])); ); v = w; ); vecprod(Vec(list)); \\ Michel Marcus, Jul 15 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael De Vlieger, Jul 10 2023
STATUS
approved