login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363592
Number of partitions of [n] such that in each block the smallest element has the same parity as the largest element.
2
1, 1, 1, 3, 6, 20, 55, 223, 761, 3595, 14532, 77818, 361605, 2155525, 11274781, 73822175, 428004750, 3046519516, 19348533739, 148493347507, 1023481273549, 8412534272415, 62450994058052, 546699337652602, 4343869829492281, 40308548641909593, 340994681344324137
OFFSET
0,4
LINKS
FORMULA
a(n) mod 2 = A131719(n+1).
EXAMPLE
a(0) = 1: () the empty partition.
a(1) = 1: 1.
a(2) = 1: 1|2.
a(3) = 3: 123, 13|2, 1|2|3.
a(4) = 6: 123|4, 13|24, 13|2|4, 1|234, 1|24|3, 1|2|3|4.
a(5) = 20: 12345, 1235|4, 123|4|5, 1245|3, 125|3|4, 1345|2, 135|24, 13|24|5, 135|2|4, 13|2|4|5, 15|234, 1|234|5, 145|2|3, 15|24|3, 1|24|35, 1|24|3|5, 1|2|345, 15|2|3|4, 1|2|35|4, 1|2|3|4|5.
MAPLE
b:= proc(n, x, y, u, v) option remember; `if`(y+u>n, 0, `if`(n=0, 1,
`if`(y=0, 0, b(n-1, v, u, y-1, x+1)*y)+b(n-1, v, u, y, x+1)+
`if`(v=0, 0, b(n-1, v-1, u+1, y, x)*v)+b(n-1, v, u, y, x)*(u+x)))
end:
a:= n-> b(n, 0$4):
seq(a(n), n=0..30);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 10 2023
STATUS
approved