login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363594
a(n) = the n-th instance of b(k)/2 such that b(k-1) and b(k-2) are both odd, where b(n) = A359804(n).
2
2, 4, 8, 13, 16, 17, 19, 23, 26, 29, 31, 32, 34, 37, 38, 41, 43, 46, 47, 53, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 82, 83, 86, 89, 92, 94, 97, 101, 103, 106, 107, 109, 113, 116, 118, 122, 124, 127, 128, 131, 134, 136, 137, 139, 142, 146, 148, 149, 151, 152, 157, 158, 163, 164, 166, 167, 172
OFFSET
1,1
COMMENTS
The sequence strictly increases, a consequence of definition of A359804.
Conjecture: { A000079 \ {1} } U { A000040 \ {3, 5, 7, 11} } is a subset. In other words, this sequence is the union of powers of 2 greater than 1, and primes greater than 11.
This sequence is conjectured to be infinite. It tracks all occurrences of consecutive odd terms in A359804, which are (by definition) always followed by an even term, from which a(n) is derived. - David James Sycamore, Jun 21 2023
LINKS
FORMULA
a(n) = A359804(A363593(n)+2)/2 = A361639(A363593(n)+1).
EXAMPLE
a(1) = 2 since b(3..5) = {3, 5, 4}; 4/2 = 2.
a(2) = 4 since b(8..10) = {7, 9, 8}; 8/2 = 4.
a(3) = 8 since b(22..24) = {33, 35, 16}; 16/2 = 8.
a(4) = 13 since b(29..31) = {45, 49, 26}; 26/2 = 13.
a(5) = 16 since b(36..38) = {55, 63, 32}; 32/2 = 16, etc.
MATHEMATICA
nn = 500; c[_] = False; q[_] = 1;
Set[{i, j}, {1, 2}]; c[1] = c[2] = True; q[2] = 2; u = 3;
Reap[Do[
(k = q[#]; While[c[k #], k++]; k *= #;
While[c[# q[#]], q[#]++]) &[(p = 2;
While[Divisible[i j, p], p = NextPrime[p]]; p)];
If[OddQ[i j], Sow[k/2]];
Set[{c[k], i, j}, {True, j, k}];
If[k == u, While[c[u], u++]], {n, 3, nn}] ][[-1, -1]]
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved