login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363591
a(n) = 3*(3^(n-1) - 2^n + 1)/2 - binomial(n,2), n >= 3.
2
0, 12, 65, 255, 882, 2870, 9039, 27945, 85448, 259512, 784797, 2366819, 7125198, 21424938, 64373339, 193316877, 580344132, 1741819148, 5227030665, 15684238119, 47059006250, 141189602142, 423593972775, 1270832250545, 3812597415552, 11437993573920, 34314383375669
OFFSET
3,2
COMMENTS
2*a(n) is the number of ordered set partitions of an n-set into 3 nonempty sets such that the number of elements in the first two sets (in total) is at least three.
FORMULA
G.f.: x^4*(12 - 31*x + 23*x^2 - 6*x^3)/((1 - x)^3*(1 - 2*x)*(1 - 3*x)). - Stefano Spezia, Jun 11 2023
EXAMPLE
2*a(5)=130 subtracting the 20 ordered set partitions of the type {1},{2},{3,4,5} from the 150 ordered set partitions of a 5-set into 3 parts.
MATHEMATICA
LinearRecurrence[{8, -24, 34, -23, 6}, {0, 12, 65, 255, 882}, 30] (* or *)
A363591[n_] := (3^n - 3*2^n - n^2 + n + 3)/2;
Array[A363591, 30, 3] (* Paolo Xausa, Aug 30 2024 *)
CROSSREFS
Sequence in context: A232383 A003868 A304833 * A223234 A378742 A289223
KEYWORD
nonn,easy
AUTHOR
Enrique Navarrete, Jun 10 2023
STATUS
approved