login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304833
a(n) = 3*n^2 + 38*n - 76 (n>=2).
2
12, 65, 124, 189, 260, 337, 420, 509, 604, 705, 812, 925, 1044, 1169, 1300, 1437, 1580, 1729, 1884, 2045, 2212, 2385, 2564, 2749, 2940, 3137, 3340, 3549, 3764, 3985, 4212, 4445, 4684, 4929, 5180, 5437, 5700, 5969, 6244, 6525, 6812, 7105, 7404, 7709, 8020, 8337, 8660, 8989, 9324, 9665, 10012, 10365, 10724, 11089
OFFSET
2,1
COMMENTS
For n>=3, a(n) is the second Zagreb index of the Mycielskian of the path graph P[n]. For the Mycielskian, see p. 205 of the West reference and/or the Wikipedia link.
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
For n>=3 the M-polynomial of the considered Mycielskian is 2*x^2*y^3 + 4*x^2*y^4 + 2*x^2*y^n + 2*(n-3)*x^3*y^4 + (n-2)*x^3*y^n +(n-3)*x^4*y^4.
REFERENCES
D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
Wikipedia, Mycielskian
FORMULA
From Colin Barker, May 21 2018: (Start)
G.f.: x^2*(12 + 29*x - 35*x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
(End)
MAPLE
seq(3*n^2+38*n-76, n = 2 .. 55);
PROG
(PARI) a(n) = 3*n^2 + 38*n - 76 \\ Felix Fröhlich, May 20 2018
(PARI) Vec(x^2*(12 + 29*x - 35*x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 21 2018
(GAP) List([2..60], n->3*n^2+38*n-76); # Muniru A Asiru, May 20 2018
CROSSREFS
Cf. A304832.
Sequence in context: A371558 A232383 A003868 * A363591 A223234 A378742
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 20 2018
STATUS
approved