Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 May 22 2018 08:14:01
%S 12,65,124,189,260,337,420,509,604,705,812,925,1044,1169,1300,1437,
%T 1580,1729,1884,2045,2212,2385,2564,2749,2940,3137,3340,3549,3764,
%U 3985,4212,4445,4684,4929,5180,5437,5700,5969,6244,6525,6812,7105,7404,7709,8020,8337,8660,8989,9324,9665,10012,10365,10724,11089
%N a(n) = 3*n^2 + 38*n - 76 (n>=2).
%C For n>=3, a(n) is the second Zagreb index of the Mycielskian of the path graph P[n]. For the Mycielskian, see p. 205 of the West reference and/or the Wikipedia link.
%C The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
%C For n>=3 the M-polynomial of the considered Mycielskian is 2*x^2*y^3 + 4*x^2*y^4 + 2*x^2*y^n + 2*(n-3)*x^3*y^4 + (n-2)*x^3*y^n +(n-3)*x^4*y^4.
%D D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.
%H Colin Barker, <a href="/A304833/b304833.txt">Table of n, a(n) for n = 2..1000</a>
%H E. Deutsch and Sandi Klavzar, <a href="http://dx.doi.org/10.22052/ijmc.2015.10106">M-polynomial and degree-based topological indices</a>, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Mycielskian">Mycielskian</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F From _Colin Barker_, May 21 2018: (Start)
%F G.f.: x^2*(12 + 29*x - 35*x^2) / (1 - x)^3.
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
%F (End)
%p seq(3*n^2+38*n-76, n = 2 .. 55);
%o (PARI) a(n) = 3*n^2 + 38*n - 76 \\ _Felix Fröhlich_, May 20 2018
%o (PARI) Vec(x^2*(12 + 29*x - 35*x^2) / (1 - x)^3 + O(x^40)) \\ _Colin Barker_, May 21 2018
%o (GAP) List([2..60], n->3*n^2+38*n-76); # _Muniru A Asiru_, May 20 2018
%Y Cf. A304832.
%K nonn,easy
%O 2,1
%A _Emeric Deutsch_, May 20 2018