|
|
A304835
|
|
a(n) = 108*n^2 - 104*n + 20 (n>=1).
|
|
2
|
|
|
24, 244, 680, 1332, 2200, 3284, 4584, 6100, 7832, 9780, 11944, 14324, 16920, 19732, 22760, 26004, 29464, 33140, 37032, 41140, 45464, 50004, 54760, 59732, 64920, 70324, 75944, 81780, 87832, 94100, 100584, 107284, 114200, 121332, 128680, 136244, 144024, 152020, 160232, 168660, 177304, 186164
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For n>=2, a(n) is the second Zagreb index of the (n,n)-triangular parallelogram P[n,n], defined in the Shiu et al. reference.
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of the (n,n)-triangular parallelogram P[n,n] is M(P[n,n]; x,y) = 4*x^2*y^4 + 4*x^3*y^4 + 2*x^3*y^6 +2*(2*n-3)*x^4*y^4 + 4*(2*n-3)*x^4*y^6 +(3*n^2 -10*n+8)*x^6*y^6.
More generally, the M-polynomial of the (p,q)-triangular parallelogram is M(P[p,q]; x,y) = 4*x^2*y^4 + 4*x^3*y^4 + 2*x^3*y^6 +2*(p + q - 3)*x^4*y^4 + 4*(p + q - 3)*x^4*y^6 +(3*p*q - 5*p -5*q +8)*x^6*y^6.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: 4*x*(6 + 43*x + 5*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
|
|
MAPLE
|
seq(20-104*n+108*n^2, n = 1 .. 45);
|
|
MATHEMATICA
|
Table[108 n^2 - 104 n + 20, {n, 1, 50}] (* Bruno Berselli, May 21 2018 *)
LinearRecurrence[{3, -3, 1}, {24, 244, 680}, 50] (* Harvey P. Dale, Jul 29 2019 *)
|
|
PROG
|
(GAP) List([1..50], n->108*n^2-104*n+20); # Muniru A Asiru, May 20 2018
(PARI) Vec(4*x*(6 + 43*x + 5*x^2)/(1 - x)^3 + O(x^40)) \\ Colin Barker, May 23 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|