The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304835 a(n) = 108*n^2 - 104*n + 20 (n>=1). 2
 24, 244, 680, 1332, 2200, 3284, 4584, 6100, 7832, 9780, 11944, 14324, 16920, 19732, 22760, 26004, 29464, 33140, 37032, 41140, 45464, 50004, 54760, 59732, 64920, 70324, 75944, 81780, 87832, 94100, 100584, 107284, 114200, 121332, 128680, 136244, 144024, 152020, 160232, 168660, 177304, 186164 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For n>=2, a(n) is the second Zagreb index of the (n,n)-triangular parallelogram P[n,n], defined in the Shiu et al. reference. The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph. The M-polynomial of the (n,n)-triangular parallelogram P[n,n] is M(P[n,n]; x,y) = 4*x^2*y^4 + 4*x^3*y^4 + 2*x^3*y^6 +2*(2*n-3)*x^4*y^4 + 4*(2*n-3)*x^4*y^6 +(3*n^2 -10*n+8)*x^6*y^6. More generally, the M-polynomial of the (p,q)-triangular parallelogram is M(P[p,q]; x,y) = 4*x^2*y^4 + 4*x^3*y^4 + 2*x^3*y^6 +2*(p + q - 3)*x^4*y^4 + 4*(p + q - 3)*x^4*y^6 +(3*p*q - 5*p -5*q +8)*x^6*y^6. 27*a(n) + 136 is a square. - Bruno Berselli, May 21 2018 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102. W. C. Shiu, P. C. B. Lam, and K. K. Poon, On Wiener numbers of polygonal nets, Discrete Appl. Math., 122, 2001, 251-261. Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA From Bruno Berselli, May 21 2018: (Start) G.f.: 4*x*(6 + 43*x + 5*x^2)/(1 - x)^3. a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). a(n) = 4*A024204(9*n-5). (End) MAPLE seq(20-104*n+108*n^2, n = 1 .. 45); MATHEMATICA Table[108 n^2 - 104 n + 20, {n, 1, 50}] (* Bruno Berselli, May 21 2018 *) LinearRecurrence[{3, -3, 1}, {24, 244, 680}, 50] (* Harvey P. Dale, Jul 29 2019 *) PROG (GAP) List([1..50], n->108*n^2-104*n+20); # Muniru A Asiru, May 20 2018 (PARI) Vec(4*x*(6 + 43*x + 5*x^2)/(1 - x)^3 + O(x^40)) \\ Colin Barker, May 23 2018 CROSSREFS Cf. A024204, A304834. Sequence in context: A052732 A267060 A086603 * A281076 A300397 A211148 Adjacent sequences: A304832 A304833 A304834 * A304836 A304837 A304838 KEYWORD nonn,easy AUTHOR Emeric Deutsch, May 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 19:28 EST 2023. Contains 367419 sequences. (Running on oeis4.)