login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304835
a(n) = 108*n^2 - 104*n + 20 (n>=1).
2
24, 244, 680, 1332, 2200, 3284, 4584, 6100, 7832, 9780, 11944, 14324, 16920, 19732, 22760, 26004, 29464, 33140, 37032, 41140, 45464, 50004, 54760, 59732, 64920, 70324, 75944, 81780, 87832, 94100, 100584, 107284, 114200, 121332, 128680, 136244, 144024, 152020, 160232, 168660, 177304, 186164
OFFSET
1,1
COMMENTS
For n>=2, a(n) is the second Zagreb index of the (n,n)-triangular parallelogram P[n,n], defined in the Shiu et al. reference.
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of the (n,n)-triangular parallelogram P[n,n] is M(P[n,n]; x,y) = 4*x^2*y^4 + 4*x^3*y^4 + 2*x^3*y^6 +2*(2*n-3)*x^4*y^4 + 4*(2*n-3)*x^4*y^6 +(3*n^2 -10*n+8)*x^6*y^6.
More generally, the M-polynomial of the (p,q)-triangular parallelogram is M(P[p,q]; x,y) = 4*x^2*y^4 + 4*x^3*y^4 + 2*x^3*y^6 +2*(p + q - 3)*x^4*y^4 + 4*(p + q - 3)*x^4*y^6 +(3*p*q - 5*p -5*q +8)*x^6*y^6.
27*a(n) + 136 is a square. - Bruno Berselli, May 21 2018
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
W. C. Shiu, P. C. B. Lam, and K. K. Poon, On Wiener numbers of polygonal nets, Discrete Appl. Math., 122, 2001, 251-261.
FORMULA
From Bruno Berselli, May 21 2018: (Start)
G.f.: 4*x*(6 + 43*x + 5*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 4*A024204(9*n-5). (End)
MAPLE
seq(20-104*n+108*n^2, n = 1 .. 45);
MATHEMATICA
Table[108 n^2 - 104 n + 20, {n, 1, 50}] (* Bruno Berselli, May 21 2018 *)
LinearRecurrence[{3, -3, 1}, {24, 244, 680}, 50] (* Harvey P. Dale, Jul 29 2019 *)
PROG
(GAP) List([1..50], n->108*n^2-104*n+20); # Muniru A Asiru, May 20 2018
(PARI) Vec(4*x*(6 + 43*x + 5*x^2)/(1 - x)^3 + O(x^40)) \\ Colin Barker, May 23 2018
CROSSREFS
Sequence in context: A052732 A267060 A086603 * A281076 A300397 A211148
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 20 2018
STATUS
approved