|
|
A304837
|
|
a(n) = 6*(n - 1)*(81*n - 104) for n >= 1.
|
|
3
|
|
|
0, 348, 1668, 3960, 7224, 11460, 16668, 22848, 30000, 38124, 47220, 57288, 68328, 80340, 93324, 107280, 122208, 138108, 154980, 172824, 191640, 211428, 232188, 253920, 276624, 300300, 324948, 350568, 377160, 404724, 433260, 462768, 493248, 524700, 557124, 590520, 624888, 660228, 696540, 733824, 772080, 811308
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n) is the first Zagreb index of the hex derived network HDN1(n) from the Manuel et al. reference (see HDN1(4) in Fig. 8).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of HDN1(n) is M(HDN1(n); x, y) = 12*x^3*y^5 + (18*(n-2))*x^3*y^7 + (6*(3*n^2-9*n+7))*x^3*y^12 + 12*x^5*y^7 + 6*x^5*y^12 + (6*(n-3))*x^7*y^7 + (12*(n-2))*x^7*y^12 + (3*(n-2)*(3*n-5)*x^12*y^12.
|
|
LINKS
|
|
|
FORMULA
|
|
|
MAPLE
|
seq(624-1110*n+486*n^2, n = 1 .. 45);
|
|
MATHEMATICA
|
Table[6 (n - 1) (81 n - 104), {n, 1, 50}] (* Bruno Berselli, May 22 2018 *)
|
|
PROG
|
(GAP) List([1..50], n->486*n^2-1110*n+624); # Muniru A Asiru, May 22 2018
(PARI) concat(0, Vec(12*x^2*(29 + 52*x)/(1 - x)^3 + O(x^40))) \\ Colin Barker, May 23 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|