OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+457, y).
Corresponding values y of solutions (x, y) are in A160580.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (601+276*sqrt(2))/457 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (213651+31850*sqrt(2))/457^2 for n mod 3 = 0.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,6,-6,0,-1,1).
FORMULA
a(n) = 6*a(n-3)-a(n-6)+914 for n > 6; a(1)=0, a(2)=348, a(3)=495, a(4)=1371, a(5)=3255, a(6)=4088.
G.f.: x*(348+147*x+876*x^2-204*x^3-49*x^4-204*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 457*A001652(k) for k >= 0.
a(1)=0, a(2)=348, a(3)=495, a(4)=1371, a(5)=3255, a(6)=4088, a(7)=9140, a(n)=a(n-1)+6*a(n-3)-6*a(n-4)-a(n-6)+a(n-7) [From Harvey P. Dale, May 13 2012]
MATHEMATICA
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 348, 495, 1371, 3255, 4088, 9140}, 30] (* Harvey P. Dale, May 13 2012 *)
PROG
(PARI) {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+914*n+208849), print1(n, ", ")))}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, May 31 2007
EXTENSIONS
Edited and two terms added by Klaus Brockhaus, Jun 08 2009
STATUS
approved