login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160580
Positive numbers y such that y^2 is of the form x^2+(x+457)^2 with integer x.
3
325, 457, 877, 1073, 2285, 4937, 6113, 13253, 28745, 35605, 77233, 167533, 207517, 450145, 976453, 1209497, 2623637, 5691185, 7049465, 15291677, 33170657, 41087293, 89126425, 193332757, 239474293, 519466873, 1126825885, 1395758465
OFFSET
1,1
COMMENTS
(-204, a(1)) and (A129642(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+457)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (601+276*sqrt(2))/457 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (213651+31850*sqrt(2))/457^2 for n mod 3 = 1.
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=325, a(2)=457, a(3)=877, a(4)=1073, a(5)=2285, a(6)=4937.
G.f.: (1-x)*(325+782*x+1659*x^2+782*x^3+325*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 457*A001653(k) for k >= 1.
EXAMPLE
(-204, a(1)) = (-204, 325) is a solution: (-204)^2+(-204+457)^2 = 41616+64009 = 105625 = 325^2.
(A129642(1), a(2)) = (0, 457) is a solution: 0^2+(0+457)^2 = 208849 = 457^2.
(A129642(3), a(4)) = (495, 1073) is a solution: 495^2+(495+457)^2 = 245025+906304 = 1151329 = 1073^2.
PROG
(PARI) {forstep(n=-204, 10000000, [3, 1], if(issquare(2*n^2+914*n+208849, &k), print1(k, ", ")))}
CROSSREFS
Cf. A129642, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160581 (decimal expansion of (601+276*sqrt(2))/457), A160582 (decimal expansion of (213651+31850*sqrt(2))/457^2).
Sequence in context: A025286 A025304 A351801 * A158272 A183645 A299708
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Jun 08 2009
STATUS
approved