login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129641
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+409)^2 = y^2.
5
0, 200, 611, 1227, 2291, 4620, 8180, 14364, 27927, 48671, 84711, 163760, 284664, 494720, 955451, 1660131, 2884427, 5569764, 9676940, 16812660, 32463951, 56402327, 97992351, 189214760, 328737840, 571142264, 1102825427, 1916025531, 3328862051, 6427738620
OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+409, y).
Corresponding values y of solutions (x, y) are in A160577.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (473+168*sqrt(2))/409 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (204819+83570*sqrt(2))/409^2 for n mod 3 = 0.
FORMULA
a(n) = 6*a(n-3)-a(n-6)+818 for n > 6; a(1)=0, a(2)=200, a(3)=611, a(4)=1227, a(5)=2291, a(6)=4620.
G.f.: x*(200+411*x+616*x^2-136*x^3-137*x^4-136*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 409*A001652(k) for k >= 0.
MATHEMATICA
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 200, 611, 1227, 2291, 4620, 8180}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
PROG
(PARI) {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+818*n+167281), print1(n, ", ")))}
CROSSREFS
Cf. A160577, A001652, A129640, A156035 (decimal expansion of 3+2*sqrt(2)), A160578 (decimal expansion of (473+168*sqrt(2))/409), A160579 (decimal expansion of (204819+83570*sqrt(2))/409^2).
Sequence in context: A109632 A258921 A258918 * A202966 A218846 A219425
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, May 31 2007
EXTENSIONS
Edited and two terms added by Klaus Brockhaus, Jun 08 2009
STATUS
approved