login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258921
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with no 3x3 subblock diagonal sum equal to the antidiagonal sum or central row sum equal to the central column sum
4
200, 576, 576, 1680, 1156, 1680, 5184, 1936, 1936, 5184, 15840, 4096, 1200, 4096, 15840, 46656, 9216, 1024, 1024, 9216, 46656, 138240, 17424, 1440, 576, 1440, 17424, 138240, 419904, 30976, 1600, 576, 576, 1600, 30976, 419904, 1270080, 66564, 1568
OFFSET
1,1
COMMENTS
Table starts
.....200....576.1680.5184.15840.46656.138240.419904.1270080.3779136.11275200
.....576...1156.1936.4096..9216.17424..30976..66564..141376..264196...501264
....1680...1936.1200.1024..1440..1600...1568...1936....2560....2704.....2592
....5184...4096.1024..576...576...784....576....576.....576.....784......576
...15840...9216.1440..576...512...576....640....576.....512.....576......640
...46656..17424.1600..784...576...576....576....784.....576.....576......576
..138240..30976.1568..576...640...576....512....576.....640.....576......512
..419904..66564.1936..576...576...784....576....576.....576.....784......576
.1270080.141376.2560..576...512...576....640....576.....512.....576......640
.3779136.264196.2704..784...576...576....576....784.....576.....576......576
LINKS
FORMULA
Empirical for diagonal and column k:
diagonal: a(n) = a(n-2) for n>5
k=1: a(n) = 3*a(n-1) -6*a(n-2) +18*a(n-3)
k=2: [order 28]
k=3: [order 10] for n>13
k=4: a(n) = a(n-4) for n>7
k=5: a(n) = a(n-1) -a(n-2) +a(n-3) for n>6
k=6: a(n) = a(n-4) for n>7
k=7: a(n) = a(n-1) -a(n-2) +a(n-3) for n>6
Empirical periodic behavior for diagonal and column k:
diagonal: apparent period of length 2 starting at n=4: 576 512
k=4: apparent period of length 4 starting at n=4: 576 576 784 576
k=5: apparent period of length 4 starting at n=4: 576 512 576 640
k=6: apparent period of length 4 starting at n=4: 784 576 576 576
k=7: apparent period of length 4 starting at n=4: 576 640 576 512
EXAMPLE
Some solutions for n=4 k=4
..1..1..0..1..1..0....1..1..0..1..0..0....1..1..1..1..0..0....1..0..1..0..0..1
..1..1..0..1..0..0....1..1..0..0..0..0....0..1..0..1..1..0....0..0..0..1..1..1
..0..1..1..0..1..0....0..1..0..0..1..0....1..0..0..1..0..1....0..1..1..0..1..0
..0..1..0..0..1..0....0..0..0..0..1..1....1..1..0..0..0..0....1..0..0..0..0..1
..1..0..1..0..0..1....0..0..1..0..1..1....0..0..0..0..1..1....0..1..0..1..1..0
..0..0..1..0..1..1....0..0..1..1..1..1....0..0..1..0..0..1....1..1..1..0..0..0
CROSSREFS
Sequence in context: A004966 A117412 A109632 * A258918 A129641 A202966
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jun 14 2015
STATUS
approved