OFFSET
1,1
COMMENTS
a(n) is the first Zagreb index of the polyazulene A[n], shown pictorially in the Cash et al. reference (Fig. 6).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of the polyazulene A[n] is M(A[n];x,y) = (n + 5)*x^2*y^2 + (6*n - 2)*x^2*y^3 + (3*n - 2)*x^3*y^3.
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
G. Cash, S. Klavzar, M. Petkovsek, Three methods for calculation of the hyper-Wiener index of a molecular graph, J. Chem. Inf. Comput. Sci. 42, 2002, 571-576.
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
From Colin Barker, May 29 2018: (Start)
G.f.: 2*x*(25 + x) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>2.
(End)
MAPLE
seq(52*n-2, n = 1..50);
MATHEMATICA
52*Range[50]-2 (* Harvey P. Dale, Jan 22 2020 *)
PROG
(PARI) Vec(2*x*(25 + x) / (1 - x)^2 + O(x^50)) \\ Colin Barker, May 29 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 24 2018
STATUS
approved