login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 6*(n - 1)*(81*n - 104) for n >= 1.
3

%I #16 May 23 2018 11:39:51

%S 0,348,1668,3960,7224,11460,16668,22848,30000,38124,47220,57288,68328,

%T 80340,93324,107280,122208,138108,154980,172824,191640,211428,232188,

%U 253920,276624,300300,324948,350568,377160,404724,433260,462768,493248,524700,557124,590520,624888,660228,696540,733824,772080,811308

%N a(n) = 6*(n - 1)*(81*n - 104) for n >= 1.

%C a(n) is the first Zagreb index of the hex derived network HDN1(n) from the Manuel et al. reference (see HDN1(4) in Fig. 8).

%C The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.

%C The M-polynomial of HDN1(n) is M(HDN1(n); x, y) = 12*x^3*y^5 + (18*(n-2))*x^3*y^7 + (6*(3*n^2-9*n+7))*x^3*y^12 + 12*x^5*y^7 + 6*x^5*y^12 + (6*(n-3))*x^7*y^7 + (12*(n-2))*x^7*y^12 + (3*(n-2)*(3*n-5)*x^12*y^12.

%C 54*a(n) + 529 is a square. - _Bruno Berselli_, May 22 2018

%H Colin Barker, <a href="/A304837/b304837.txt">Table of n, a(n) for n = 1..1000</a>

%H E. Deutsch and Sandi Klavzar, <a href="http://dx.doi.org/10.22052/ijmc.2015.10106">M-polynomial and degree-based topological indices</a>, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.

%H P. Manuel, R. Bharati, I. Rajasingh, and Chris Monica M, <a href="https://doi.org/10.1016/j.jda.2006.09.002">On minimum metric dimension of honeycomb networks</a>, J. Discrete Algorithms, 6, 2008, 20-27.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F G.f.: 12*x^2*(29 + 52*x)/(1 - x)^3. - _Bruno Berselli_, May 22 2018

%p seq(624-1110*n+486*n^2, n = 1 .. 45);

%t Table[6 (n - 1) (81 n - 104), {n, 1, 50}] (* _Bruno Berselli_, May 22 2018 *)

%o (GAP) List([1..50], n->486*n^2-1110*n+624); # _Muniru A Asiru_, May 22 2018

%o (PARI) concat(0, Vec(12*x^2*(29 + 52*x)/(1 - x)^3 + O(x^40))) \\ _Colin Barker_, May 23 2018

%Y Cf. A082040, A304836, A304838.

%K nonn,easy

%O 1,2

%A _Emeric Deutsch_, May 21 2018