Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jul 29 2019 12:09:32
%S 24,244,680,1332,2200,3284,4584,6100,7832,9780,11944,14324,16920,
%T 19732,22760,26004,29464,33140,37032,41140,45464,50004,54760,59732,
%U 64920,70324,75944,81780,87832,94100,100584,107284,114200,121332,128680,136244,144024,152020,160232,168660,177304,186164
%N a(n) = 108*n^2 - 104*n + 20 (n>=1).
%C For n>=2, a(n) is the second Zagreb index of the (n,n)-triangular parallelogram P[n,n], defined in the Shiu et al. reference.
%C The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
%C The M-polynomial of the (n,n)-triangular parallelogram P[n,n] is M(P[n,n]; x,y) = 4*x^2*y^4 + 4*x^3*y^4 + 2*x^3*y^6 +2*(2*n-3)*x^4*y^4 + 4*(2*n-3)*x^4*y^6 +(3*n^2 -10*n+8)*x^6*y^6.
%C More generally, the M-polynomial of the (p,q)-triangular parallelogram is M(P[p,q]; x,y) = 4*x^2*y^4 + 4*x^3*y^4 + 2*x^3*y^6 +2*(p + q - 3)*x^4*y^4 + 4*(p + q - 3)*x^4*y^6 +(3*p*q - 5*p -5*q +8)*x^6*y^6.
%C 27*a(n) + 136 is a square. - _Bruno Berselli_, May 21 2018
%H Colin Barker, <a href="/A304835/b304835.txt">Table of n, a(n) for n = 1..1000</a>
%H E. Deutsch and Sandi Klavzar, <a href="http://dx.doi.org/10.22052/ijmc.2015.10106">M-polynomial and degree-based topological indices</a>, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
%H W. C. Shiu, P. C. B. Lam, and K. K. Poon, <a href="https://doi.org/10.1016/S0166-218X(01)00317-1">On Wiener numbers of polygonal nets</a>, Discrete Appl. Math., 122, 2001, 251-261.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F From _Bruno Berselli_, May 21 2018: (Start)
%F G.f.: 4*x*(6 + 43*x + 5*x^2)/(1 - x)^3.
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
%F a(n) = 4*A024204(9*n-5). (End)
%p seq(20-104*n+108*n^2, n = 1 .. 45);
%t Table[108 n^2 - 104 n + 20, {n, 1, 50}] (* _Bruno Berselli_, May 21 2018 *)
%t LinearRecurrence[{3,-3,1},{24,244,680},50] (* _Harvey P. Dale_, Jul 29 2019 *)
%o (GAP) List([1..50], n->108*n^2-104*n+20); # _Muniru A Asiru_, May 20 2018
%o (PARI) Vec(4*x*(6 + 43*x + 5*x^2)/(1 - x)^3 + O(x^40)) \\ _Colin Barker_, May 23 2018
%Y Cf. A024204, A304834.
%K nonn,easy
%O 1,1
%A _Emeric Deutsch_, May 20 2018