OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,1,-2,1).
FORMULA
a(n) = floor((n^4 + 5*n^3 + 7*n^2 + 2*n)/(3*n^2 + 11*n + 9)). - Neven Juric (neven.juric(AT)apis-it.hr), neven.juric(AT)apis-it.hr, May 17 2007
a(n) = floor((n^3 + 2*n^2)/(3*n + 2)). - Gary Detlefs, Jul 13 2010
G.f.: x^2*(x^11-2*x^10+2*x^9-x^8-x^7-x^5-2*x^3-2) / ((x-1)^3*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Aug 16 2014
For k > 0, a(9*k) = 27*k^2 + 4*k - 1, a(9*k+1) = 27*k^2 + 10*k, a(9*k+2) = 27*k^2 + 16*k + 1, a(9*k+3) = 27*k^2 + 22*k + 4, a(9*k+4) = 27*k^2 + 28*k + 6, a(9*k+5) = 27*k^2 + 34*k + 10, a(9*k+6) = 27*k^2 + 40*k + 14, a(9*k+7) = 27*k^2 + 46*k + 19, a(9*k+8) = 27*k^2 + 52*k + 24. - Jinyuan Wang, Jul 09 2020
PROG
(PARI) a(n) = (n^3+2*n^2)\(3*n+2) \\ Michel Marcus, Aug 16 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Michel Marcus, Aug 16 2014
STATUS
approved