login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024204
[ (3rd elementary symmetric function of S(n))/(2nd elementary symmetric function of S(n)) ], where S(n) = {first n+2 odd positive integers}.
1
0, 2, 4, 6, 10, 14, 19, 24, 30, 37, 44, 53, 61, 71, 81, 92, 103, 115, 128, 141, 156, 170, 186, 202, 219, 236, 254, 273, 292, 313, 333, 355, 377, 400, 423, 447, 472, 497, 524, 550, 578, 606, 635, 664, 694, 725, 756, 789, 821, 855, 889, 924, 959, 995, 1032
OFFSET
1,2
FORMULA
a(n) = floor((n^4 + 5*n^3 + 7*n^2 + 2*n)/(3*n^2 + 11*n + 9)). - Neven Juric (neven.juric(AT)apis-it.hr), neven.juric(AT)apis-it.hr, May 17 2007
a(n) = floor((n^3 + 2*n^2)/(3*n + 2)). - Gary Detlefs, Jul 13 2010
G.f.: x^2*(x^11-2*x^10+2*x^9-x^8-x^7-x^5-2*x^3-2) / ((x-1)^3*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Aug 16 2014
For k > 0, a(9*k) = 27*k^2 + 4*k - 1, a(9*k+1) = 27*k^2 + 10*k, a(9*k+2) = 27*k^2 + 16*k + 1, a(9*k+3) = 27*k^2 + 22*k + 4, a(9*k+4) = 27*k^2 + 28*k + 6, a(9*k+5) = 27*k^2 + 34*k + 10, a(9*k+6) = 27*k^2 + 40*k + 14, a(9*k+7) = 27*k^2 + 46*k + 19, a(9*k+8) = 27*k^2 + 52*k + 24. - Jinyuan Wang, Jul 09 2020
PROG
(PARI) a(n) = (n^3+2*n^2)\(3*n+2) \\ Michel Marcus, Aug 16 2014
CROSSREFS
Sequence in context: A098380 A007782 A035501 * A036641 A260732 A062425
KEYWORD
nonn
EXTENSIONS
More terms from Michel Marcus, Aug 16 2014
STATUS
approved