The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024207 Number of terms in n-th derivative of a function composed with itself 7 times. 14
 1, 1, 7, 28, 105, 322, 952, 2541, 6539, 15833, 37148, 83594, 183289, 389520, 809820, 1643375, 3272797, 6390745, 12279337, 23208483, 43252360, 79483096, 144265338, 258673983, 458747540, 804877837, 1398356706, 2406328974, 4104352128, 6940717598, 11643270856 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 W. C. Yang, Derivatives are essentially integer partitions, Discrete Mathematics, 222(1-3), July 2000, 235-245. FORMULA If a(n,m) = number of terms in m-derivative of a function composed with itself n times, p(n,k) = number of partitions of n into k parts, then a(n,m) = sum_{i=0..m} p(m,i)*a(n-1,i). MATHEMATICA b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k - j], {j, 0, Min[n/i, k]}]]]]; a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]]; a[n_] := a[n, 7]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 28 2017, after Alois P. Heinz *) CROSSREFS Cf. A008778, A022811-A022817, A024208-A024210. First column of A050301. Column k=7 of A022818. Sequence in context: A219411 A224404 A331197 * A000416 A000417 A200762 Adjacent sequences:  A024204 A024205 A024206 * A024208 A024209 A024210 KEYWORD nonn AUTHOR Winston C. Yang (yang(AT)math.wisc.edu) EXTENSIONS More terms from Alois P. Heinz, Aug 18 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 4 20:08 EDT 2022. Contains 355086 sequences. (Running on oeis4.)