login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022817
Number of terms in 7th derivative of a function composed with itself n times.
8
1, 15, 74, 237, 599, 1301, 2541, 4586, 7785, 12583, 19536, 29327, 42783, 60893, 84827, 115956, 155873, 206415, 269686, 348081, 444311, 561429, 702857, 872414, 1074345, 1313351, 1594620, 1923859, 2307327, 2751869, 3264951, 3854696, 4529921, 5300175, 6175778
OFFSET
1,2
REFERENCES
W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.
LINKS
W. C. Yang, Derivatives are essentially integer partitions, Discrete Mathematics, 222(1-3), July 2000, 235-245.
FORMULA
a(n) = n/720 * (n^5 + 39*n^4 + 355*n^3 + 645*n^2 - 356*n + 36).
G.f.: (x^5-4*x^4+x^3+10*x^2-8*x-1)*x/(x-1)^7. - Alois P. Heinz, Aug 18 2012
MAPLE
a:= n-> n*(36+(-356+(645+(355+(39+n)*n)*n)*n)*n)/720:
seq(a(n), n=1..40); # Alois P. Heinz, Aug 18 2012
MATHEMATICA
Table[(n/720*(n^5+39*n^4+355*n^3+645*n^2-356*n+36)), {n, 1, 100}] (* Vincenzo Librandi, Aug 18 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Christian G. Bower, Aug 15 1999.
STATUS
approved