login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177540
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, up, up, down.
2
1, 1, 2, 6, 24, 120, 720, 4908, 38208, 334368, 3248640, 34774112, 405758208, 5129918808, 69849531936, 1018876044528, 15854497560576, 262116761475488, 4588408779868800, 84784281517177940, 1649073291620014880, 33678805727832427224, 720569710852319474016
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n * n!, where d = 0.97251576612005359341988641793523250275..., c = 1.18354011206219905745522624899424386... . - Vaclav Kotesovec, Jan 17 2015
MAPLE
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
add(b(u-j, o+j-1, [1, 3, 4, 1, 3, 7][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 2, 5, 6, 2][t]), j=1..o)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 24 2013
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
Sum[b[u - j, o + j - 1, {1, 3, 4, 1, 3, 7}[[t]]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, {2, 2, 2, 5, 6, 2}[[t]]], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
CROSSREFS
Column k=38 of A242784.
Sequence in context: A177539 A177546 A177544 * A068201 A189848 A189285
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 10 2010
EXTENSIONS
a(17)-a(22) from Alois P. Heinz, Oct 24 2013
STATUS
approved