login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177539
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, up, down, up.
2
1, 1, 2, 6, 24, 120, 720, 4859, 37424, 323784, 3107520, 32749200, 376929246, 4698101279, 63058148792, 906829731450, 13911580276800, 226738605155619, 3912973221007668, 71280397766349665, 1366816300552776920, 27519285653572655340, 580456044040809459821
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n * n!, where d = 0.958757960478580745672487123002941621817..., c = 1.30438280919882137519668832091857761... . - Vaclav Kotesovec, Jan 17 2015
MAPLE
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
add(b(u-j, o+j-1, [1, 3, 4, 1, 6, 4][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 2, 5, 2, 7][t]), j=1..o)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 24 2013
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
Sum[b[u - j, o + j - 1, {1, 3, 4, 1, 6, 4}[[t]]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, {2, 2, 2, 5, 2, 7}[[t]]], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
CROSSREFS
Columns k=37,41 of A242784.
Sequence in context: A147739 A147738 A147737 * A177546 A177544 A177540
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 10 2010
EXTENSIONS
a(17)-a(22) from Alois P. Heinz, Oct 24 2013
STATUS
approved