login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254520
Möbius transform of A034676.
1
1, 4, 9, 12, 25, 36, 49, 48, 72, 100, 121, 108, 169, 196, 225, 192, 289, 288, 361, 300, 441, 484, 529, 432, 600, 676, 648, 588, 841, 900, 961, 768, 1089, 1156, 1225, 864, 1369, 1444, 1521, 1200, 1681, 1764, 1849, 1452, 1800, 2116, 2209, 1728, 2352, 2400
OFFSET
1,2
COMMENTS
The Dirichlet convolution of a(n) and sigma(n) is sigma(n^2).
LINKS
FORMULA
a(n) = n^2 * Sum_{d^2 | n} (moebius(d) / d^2).
Multiplicative with a(p) = p^2; a(p^e) = p^(2e) - p^(2e-2), for e > 1.
Dirichlet g.f.: zeta(s-2) / zeta(2s-2).
Sum_{k=1..n} a(k) ~ 30 * n^3 / Pi^4. - Vaclav Kotesovec, Jan 11 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/p^2 + 1/(p^2 - 1)^2) = 1.681923034881403168503816690236967736500606659628336043348190538886262268... - Vaclav Kotesovec, Sep 20 2020
PROG
(PARI) a(n) = n^2*sumdiv(n, d, if (issquare(d), moebius(sqrtint(d))/d)); \\ Michel Marcus, Feb 10 2015
CROSSREFS
KEYWORD
mult,nonn
AUTHOR
Álvar Ibeas, Jan 31 2015
STATUS
approved