login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283105
Numbers that are an integer multiple of the mean of their smallest and largest nontrivial divisors.
1
4, 9, 12, 25, 45, 49, 121, 169, 289, 361, 529, 637, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 13357, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481, 37249, 38809, 39601, 44521
OFFSET
1,1
COMMENTS
No prime is in the sequence since there are no nontrivial divisors of a prime.
The sequence includes every number that is the square of a prime.
It is easy to show that the other terms are of the form (2p-1)*p^2 where p and 2p-1 are prime. Therefore, the mean of the two divisors in question is always an integer.
LINKS
EXAMPLE
4 is in the sequence because its smallest nontrivial divisor is 2, its largest nontrivial divisor is 2, and their mean is 2.
45 is in the sequence because its smallest nontrivial divisor is 3, its largest nontrivial divisor is 15, and their mean is 9, a divisor of 45.
10 is not in the sequence because it is not an integral multiple of 7/2, the mean of 2 and 5.
MATHEMATICA
mslndQ[n_]:=Module[{d=Divisors[n]}, Divisible[n, Mean[{d[[2]], d[[-2]]}]]]; Select[Range[2, 50000], mslndQ] (* Harvey P. Dale, Jul 24 2017 *)
PROG
(PARI) is(n) = my(d=divisors(n), m=(d[2]+d[#d-1])/2); if(n%m==0, 1, 0) \\ Felix Fröhlich, Feb 28 2017
CROSSREFS
Sequence in context: A076794 A254520 A344578 * A179808 A083351 A055381
KEYWORD
nonn
AUTHOR
Emmanuel Vantieghem, Feb 28 2017
STATUS
approved