login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254521
Coefficients of the Dirichlet series zeta(s-3) / zeta(3s-3).
1
1, 8, 27, 64, 125, 216, 343, 504, 729, 1000, 1331, 1728, 2197, 2744, 3375, 4032, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13608, 15625, 17576, 19656, 21952, 24389, 27000, 29791, 32256, 35937, 39304, 42875, 46656, 50653, 54872, 59319
OFFSET
1,2
LINKS
FORMULA
a(n) = n^3 * Sum_{d^3 | n} (moebius(d) / d^6).
Multiplicative with a(p) = p^3; a(p^2) = p^6; a(p^e) = p^(3e) - p^(3e-6), for e > 2.
Sum_{k=1..n} a(k) ~ n^4 / (4*Zeta(9)). - Vaclav Kotesovec, Feb 03 2019
Sum_{k>=1} 1/a(k) = Product_{p prime} (1 + 1/p^3 + 1/p^6 + 1/((p^3 - 1)^2*(p^3 + 1))) = 1.202094253239358480267688474077353358147971390519883358936462981705245... - Vaclav Kotesovec, Sep 26 2020
PROG
(PARI) a(n) = n^3*sumdiv(n, d, if (ispower(d, 3), moebius(sqrtnint(d, 3))/d^2)); \\ Michel Marcus, Feb 10 2015
(PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1 - p^3*X)*(1 - p^3*X^3))[n], ", ")) \\ Vaclav Kotesovec, Sep 26 2020
CROSSREFS
Cf. A000578.
Sequence in context: A076989 A270437 A259603 * A351985 A352172 A376270
KEYWORD
mult,nonn
AUTHOR
Álvar Ibeas, Jan 31 2015
STATUS
approved