login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of the Dirichlet series zeta(s-3) / zeta(3s-3).
1

%I #15 Sep 26 2020 09:15:38

%S 1,8,27,64,125,216,343,504,729,1000,1331,1728,2197,2744,3375,4032,

%T 4913,5832,6859,8000,9261,10648,12167,13608,15625,17576,19656,21952,

%U 24389,27000,29791,32256,35937,39304,42875,46656,50653,54872,59319

%N Coefficients of the Dirichlet series zeta(s-3) / zeta(3s-3).

%H Álvar Ibeas, <a href="/A254521/b254521.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = n^3 * Sum_{d^3 | n} (moebius(d) / d^6).

%F Multiplicative with a(p) = p^3; a(p^2) = p^6; a(p^e) = p^(3e) - p^(3e-6), for e > 2.

%F Sum_{k=1..n} a(k) ~ n^4 / (4*Zeta(9)). - _Vaclav Kotesovec_, Feb 03 2019

%F Sum_{k>=1} 1/a(k) = Product_{p prime} (1 + 1/p^3 + 1/p^6 + 1/((p^3 - 1)^2*(p^3 + 1))) = 1.202094253239358480267688474077353358147971390519883358936462981705245... - _Vaclav Kotesovec_, Sep 26 2020

%o (PARI) a(n) = n^3*sumdiv(n, d, if (ispower(d, 3), moebius(sqrtnint(d, 3))/d^2)); \\ _Michel Marcus_, Feb 10 2015

%o (PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1 - p^3*X)*(1 - p^3*X^3))[n], ", ")) \\ _Vaclav Kotesovec_, Sep 26 2020

%Y Cf. A000578.

%K mult,nonn

%O 1,2

%A _Álvar Ibeas_, Jan 31 2015