login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072167
T_10(n) in the notation of Bergeron et al., u_10(n) in the notation of Gessel: Related to Young tableaux of bounded height.
2
1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916799, 479001478, 6227012074, 87177809092, 1307651456625, 20921799763626, 355647213494682, 6400805686152436, 121585553747301448, 2430677026538811240
OFFSET
1,2
COMMENTS
In general, column k > 1 of A214015 is asymptotic to (Product_{j=1..k} j!) * k^(2*n + k^2/2) / (Pi^((k-1)/2) * 2^((k-1)*(k+2)/2) * n^((k^2-1)/2)). - Vaclav Kotesovec, Sep 10 2014
LINKS
F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015.
Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
FORMULA
a(n) ~ 546852789 * 2^(2*n + 26)* 5^(2*n + 55) / (n^(99/2) * Pi^(9/2)). - Vaclav Kotesovec, Sep 10 2014
Recurrence: (n+9)^2*(n + 16)^2*(n + 21)^2*(n + 24)^2*(n + 25)*a(n) = 2*(110*n^9 + 13497*n^8 + 704088*n^7 + 20286926*n^6 + 350428790*n^5 + 3672058745*n^4 + 22314826244*n^3 + 68412531600*n^2 + 64584000000*n - 45705600000)*a(n-1) - 4*(n-1)^2*(4092*n^7 + 349536*n^6 + 12084237*n^5 + 215646686*n^4 + 2088552609*n^3 + 10433770264*n^2 + 21962910556*n + 8002290720)*a(n-2) + 8*(n-2)^2*(n-1)^2*(61160*n^5 + 3273732*n^4 + 64938154*n^3 + 580006399*n^2 + 2208119423*n + 2488711560)*a(n-3) - 256*(n-3)^2*(n-2)^2*(n-1)^2*(21076*n^3 + 577824*n^2 + 4743323*n + 11018760)*a(n-4) + 7372800*(n-4)^2*(n-3)^2*(n-2)^2*(n-1)^2*(2*n + 15)*a(n-5). - Vaclav Kotesovec, Sep 10 2014
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)! / mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l)^2, `if`(i<1, 0, `if`(i=1, h([l[], 1$n])^2,
g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
a:= n-> g(n, 10, []):
seq(a(n), n=0..25); # Vaclav Kotesovec, Sep 10 2014, after Alois P. Heinz
MATHEMATICA
RecurrenceTable[{-7372800*(-4 + n)^2*(-3 + n)^2*(-2 + n)^2*(-1 + n)^2*(15 + 2*n)*a[-5 + n] + 256*(-3 + n)^2*(-2 + n)^2*(-1 + n)^2*(11018760 + 4743323*n + 577824*n^2 + 21076*n^3)*a[-4 + n]-8*(-2 + n)^2*(-1 + n)^2*(2488711560 + 2208119423*n + 580006399*n^2 + 64938154*n^3 + 3273732*n^4 + 61160*n^5)*a[-3 + n] + 4*(-1 + n)^2*(8002290720 + 21962910556*n + 10433770264*n^2 + 2088552609*n^3 + 215646686*n^4 + 12084237*n^5 + 349536*n^6 + 4092*n^7)*a[-2 + n]-2*(-45705600000 + 64584000000*n + 68412531600*n^2 + 22314826244*n^3 + 3672058745*n^4 + 350428790*n^5 + 20286926*n^6 + 704088*n^7 + 13497*n^8 + 110*n^9)*a[-1 + n] + (9 + n)^2*(16 + n)^2*(21 + n)^2*(24 + n)^2*(25 + n)*a[n]==0, a[1]==1, a[2]==2, a[3]==6, a[4]==24, a[5]==120}, a, {n, 1, 20}] (* Vaclav Kotesovec, Sep 10 2014 *)
CROSSREFS
Cf. A052399 for T_6(n), A047890 for T_5(n), A047889 for T_4(n).
Column k=10 of A214015.
Sequence in context: A267390 A360463 A193937 * A230233 A154659 A254523
KEYWORD
nonn
AUTHOR
Jesse Carlsson (j.carlsson(AT)physics.unimelb.edu.au), Jun 29 2002
STATUS
approved