The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052399 Number of permutations in S_n with longest increasing subsequence of length <= 6. 9
 1, 1, 2, 6, 24, 120, 720, 5039, 40270, 361302, 3587916, 38957991, 457647966, 5763075506, 77182248916, 1091842643475, 16219884281650, 251774983140578, 4066273930979460, 68077194367392864, 1177729684507324152, 20995515989327134152, 384762410996641402384 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Previous name was: Related to Young tableaux of bounded height. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..250 F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7. Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020. Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015. Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016. FORMULA a(n) ~ 5 * 2^(2*n + 6) * 3^(2*n + 21) / (n^(35/2) * Pi^(5/2)). - Vaclav Kotesovec, Sep 10 2014 MAPLE h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j        +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)     end: g:= proc(n, i, l) option remember;       `if`(n=0, h(l)^2, `if`(i<1, 0, `if`(i=1, h([l[], 1\$n])^2,        g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i, [l[], i])))))     end: a:= n-> g(n, 6, []): seq(a(n), n=0..25); # Alois P. Heinz, Apr 10 2012 # second Maple program a:= proc(n) option remember; `if`(n<7, n!,       ((56*n^5-9408+11032*n+19028*n^2+7360*n^3+1092*n^4)*a(n-1)        -4*(196*n^3+1608*n^2+3167*n+444)*(n-1)^2*a(n-2)        +1152*(2*n+3)*(n-1)^2*(n-2)^2*a(n-3))/ ((n+9)*(n+8)^2*(n+5)^2))     end: seq(a(n), n=1..30);  # Alois P. Heinz, Sep 26 2012 MATHEMATICA h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_, k_] := If[k >= n, n!, g[n, k, {}]]; Table[a[n, 6], {n, 0, 30}] (* Jean-François Alcover, Mar 11 2014, after Alois P. Heinz *) CROSSREFS Cf. A005802, A047889, A047890. Column k=6 of A214015. Sequence in context: A164873 A226438 A248839 * A177553 A090583 A248775 Adjacent sequences:  A052396 A052397 A052398 * A052400 A052401 A052402 KEYWORD nonn AUTHOR N. J. A. Sloane, Mar 13 2000 EXTENSIONS More terms from Alois P. Heinz, Apr 10 2012 New name from Vaclav Kotesovec, Sep 10 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 13:35 EDT 2021. Contains 345112 sequences. (Running on oeis4.)