Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Dec 01 2018 07:59:05
%S 1,2,6,24,120,720,5040,40320,362880,3628800,39916799,479001478,
%T 6227012074,87177809092,1307651456625,20921799763626,355647213494682,
%U 6400805686152436,121585553747301448,2430677026538811240
%N T_10(n) in the notation of Bergeron et al., u_10(n) in the notation of Gessel: Related to Young tableaux of bounded height.
%C In general, column k > 1 of A214015 is asymptotic to (Product_{j=1..k} j!) * k^(2*n + k^2/2) / (Pi^((k-1)/2) * 2^((k-1)*(k+2)/2) * n^((k^2-1)/2)). - _Vaclav Kotesovec_, Sep 10 2014
%H Vaclav Kotesovec, <a href="/A072167/b072167.txt">Table of n, a(n) for n = 1..500</a>
%H F. Bergeron and F. Gascon, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/CYT/cyt.html">Counting Young tableaux of bounded height</a>, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
%H Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, <a href="http://arxiv.org/abs/1504.02513">The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r</a>, arXiv:1504.02513 [math.CO], 2015.
%H Ira M. Gessel, <a href="http://dx.doi.org/10.1016/0097-3165(90)90060-A">Symmetric functions and P-recursiveness</a>, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
%H Nathaniel Shar, <a href="https://pdfs.semanticscholar.org/98e3/71b675789ed6ec4f9c9cd82e2dee9ca79399.pdf">Experimental methods in permutation patterns and bijective proof</a>, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
%F a(n) ~ 546852789 * 2^(2*n + 26)* 5^(2*n + 55) / (n^(99/2) * Pi^(9/2)). - _Vaclav Kotesovec_, Sep 10 2014
%F Recurrence: (n+9)^2*(n + 16)^2*(n + 21)^2*(n + 24)^2*(n + 25)*a(n) = 2*(110*n^9 + 13497*n^8 + 704088*n^7 + 20286926*n^6 + 350428790*n^5 + 3672058745*n^4 + 22314826244*n^3 + 68412531600*n^2 + 64584000000*n - 45705600000)*a(n-1) - 4*(n-1)^2*(4092*n^7 + 349536*n^6 + 12084237*n^5 + 215646686*n^4 + 2088552609*n^3 + 10433770264*n^2 + 21962910556*n + 8002290720)*a(n-2) + 8*(n-2)^2*(n-1)^2*(61160*n^5 + 3273732*n^4 + 64938154*n^3 + 580006399*n^2 + 2208119423*n + 2488711560)*a(n-3) - 256*(n-3)^2*(n-2)^2*(n-1)^2*(21076*n^3 + 577824*n^2 + 4743323*n + 11018760)*a(n-4) + 7372800*(n-4)^2*(n-3)^2*(n-2)^2*(n-1)^2*(2*n + 15)*a(n-5). - _Vaclav Kotesovec_, Sep 10 2014
%p h:= proc(l) local n; n:=nops(l); add(i, i=l)! / mul(mul(1+l[i]-j
%p +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
%p end:
%p g:= proc(n, i, l) option remember;
%p `if`(n=0, h(l)^2, `if`(i<1, 0, `if`(i=1, h([l[], 1$n])^2,
%p g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i, [l[], i])))))
%p end:
%p a:= n-> g(n, 10, []):
%p seq(a(n), n=0..25); # _Vaclav Kotesovec_, Sep 10 2014, after Alois P. Heinz
%t RecurrenceTable[{-7372800*(-4 + n)^2*(-3 + n)^2*(-2 + n)^2*(-1 + n)^2*(15 + 2*n)*a[-5 + n] + 256*(-3 + n)^2*(-2 + n)^2*(-1 + n)^2*(11018760 + 4743323*n + 577824*n^2 + 21076*n^3)*a[-4 + n]-8*(-2 + n)^2*(-1 + n)^2*(2488711560 + 2208119423*n + 580006399*n^2 + 64938154*n^3 + 3273732*n^4 + 61160*n^5)*a[-3 + n] + 4*(-1 + n)^2*(8002290720 + 21962910556*n + 10433770264*n^2 + 2088552609*n^3 + 215646686*n^4 + 12084237*n^5 + 349536*n^6 + 4092*n^7)*a[-2 + n]-2*(-45705600000 + 64584000000*n + 68412531600*n^2 + 22314826244*n^3 + 3672058745*n^4 + 350428790*n^5 + 20286926*n^6 + 704088*n^7 + 13497*n^8 + 110*n^9)*a[-1 + n] + (9 + n)^2*(16 + n)^2*(21 + n)^2*(24 + n)^2*(25 + n)*a[n]==0,a[1]==1,a[2]==2,a[3]==6,a[4]==24,a[5]==120},a,{n,1,20}] (* _Vaclav Kotesovec_, Sep 10 2014 *)
%Y Cf. A052399 for T_6(n), A047890 for T_5(n), A047889 for T_4(n).
%Y Column k=10 of A214015.
%K nonn
%O 1,2
%A Jesse Carlsson (j.carlsson(AT)physics.unimelb.edu.au), Jun 29 2002