login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135685
Triangular sequence of the coefficients of the numerator of the rational recursive sequence for tan(n*y) with x = tan(y).
1
0, 0, 1, 0, -2, 0, -3, 0, 1, 0, 4, 0, -4, 0, 5, 0, -10, 0, 1, 0, -6, 0, 20, 0, -6, 0, -7, 0, 35, 0, -21, 0, 1, 0, 8, 0, -56, 0, 56, 0, -8, 0, 9, 0, -84, 0, 126, 0, -36, 0, 1, 0, -10, 0, 120, 0, -252, 0, 120, 0, -10, 0, -11, 0, 165, 0, -462, 0, 330, 0, -55, 0, 1
OFFSET
0,5
COMMENTS
Signed version of A034867 with interlaced zeros. - Joerg Arndt, Sep 14 2014
The negatives of these terms gives the coefficients for the numerators for when n is negative (i.e. tan(-n*y) = -tan(n*y)). - James Burling, Sep 14 2014
LINKS
Clark Kimberling, Polynomials associated with reciprocation, JIS 12 (2009) 09.3.4, section 5.
FORMULA
p(n, x) = (p(n-1, x) + x)/(1 - x*p(n-1, x)), with p(0, x) = 0, p(1, x) = x.
Sum_{j} T(n,j)*x^j = g(n,x) where g(0,x) = 0, g(1,x) = x, g(n,x) = -2*(-1)^n*g(n-1,x) + (x^2+1)*g(n-2,x). - Robert Israel, Sep 14 2014
EXAMPLE
Triangle starts:
0;
0, 1;
0, -2;
0, -3, 0, 1;
0, 4, 0, -4;
0, 5, 0, -10, 0, 1;
0, -6, 0, 20, 0, -6;
0, -7, 0, 35, 0, -21, 0, 1;
0, 8, 0, -56, 0, 56, 0, -8;
0, 9, 0, -84, 0, 126, 0, -36, 0, 1;
0, -10, 0, 120, 0, -252, 0, 120, 0, -10;
0, -11, 0, 165, 0, -462, 0, 330, 0, -55, 0, 1;
MAPLE
g[0]:= 0:
g[1]:= x;
for n from 2 to 20 do
g[n]:= expand(-2*(-1)^n*g[n-1]+(x^2+1)*g[n-2])
od:
0, seq(seq(coeff(g[n], x, j), j=0..degree(g[n])), n=1..20); # Robert Israel, Sep 14 2014
MATHEMATICA
p[n_, x_]:= p[n, x]= If[n<2, n*x, (p[n-1, x] + x)/(1 - x*p[n-1, x])];
Table[CoefficientList[Numerator[FullSimplify[p[n, x]]], x], {n, 0, 12}]//Flatten
PROG
(Sage)
def p(n, x): return n*x if (n<2) else 2*(-1)^(n+1)*p(n-1, x) + (1+x^2)*p(n-2, x)
def A135685(n, k): return ( p(n, x) ).series(x, n+1).list()[k]
flatten([[A135685(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Nov 26 2021
CROSSREFS
Sequence in context: A218031 A135523 A194663 * A349447 A164658 A079067
KEYWORD
tabf,sign
AUTHOR
Roger L. Bagula, Feb 17 2008
EXTENSIONS
Prepended first term and offset corrected by James Burling, Sep 14 2014
STATUS
approved