Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Nov 27 2021 05:17:28
%S 0,0,1,0,-2,0,-3,0,1,0,4,0,-4,0,5,0,-10,0,1,0,-6,0,20,0,-6,0,-7,0,35,
%T 0,-21,0,1,0,8,0,-56,0,56,0,-8,0,9,0,-84,0,126,0,-36,0,1,0,-10,0,120,
%U 0,-252,0,120,0,-10,0,-11,0,165,0,-462,0,330,0,-55,0,1
%N Triangular sequence of the coefficients of the numerator of the rational recursive sequence for tan(n*y) with x = tan(y).
%C Signed version of A034867 with interlaced zeros. - _Joerg Arndt_, Sep 14 2014
%C The negatives of these terms gives the coefficients for the numerators for when n is negative (i.e. tan(-n*y) = -tan(n*y)). - _James Burling_, Sep 14 2014
%H Robert Israel, <a href="/A135685/b135685.txt">Table of n, a(n) for n = 0..10082</a>
%H Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Kimberling/kimberling56.html">Polynomials associated with reciprocation</a>, JIS 12 (2009) 09.3.4, section 5.
%F p(n, x) = (p(n-1, x) + x)/(1 - x*p(n-1, x)), with p(0, x) = 0, p(1, x) = x.
%F Sum_{j} T(n,j)*x^j = g(n,x) where g(0,x) = 0, g(1,x) = x, g(n,x) = -2*(-1)^n*g(n-1,x) + (x^2+1)*g(n-2,x). - _Robert Israel_, Sep 14 2014
%e Triangle starts:
%e 0;
%e 0, 1;
%e 0, -2;
%e 0, -3, 0, 1;
%e 0, 4, 0, -4;
%e 0, 5, 0, -10, 0, 1;
%e 0, -6, 0, 20, 0, -6;
%e 0, -7, 0, 35, 0, -21, 0, 1;
%e 0, 8, 0, -56, 0, 56, 0, -8;
%e 0, 9, 0, -84, 0, 126, 0, -36, 0, 1;
%e 0, -10, 0, 120, 0, -252, 0, 120, 0, -10;
%e 0, -11, 0, 165, 0, -462, 0, 330, 0, -55, 0, 1;
%p g[0]:= 0:
%p g[1]:= x;
%p for n from 2 to 20 do
%p g[n]:= expand(-2*(-1)^n*g[n-1]+(x^2+1)*g[n-2])
%p od:
%p 0, seq(seq(coeff(g[n],x,j),j=0..degree(g[n])),n=1..20); # _Robert Israel_, Sep 14 2014
%t p[n_, x_]:= p[n, x]= If[n<2, n*x, (p[n-1, x] + x)/(1 - x*p[n-1, x])];
%t Table[CoefficientList[Numerator[FullSimplify[p[n, x]]], x], {n,0,12}]//Flatten
%o (Sage)
%o def p(n, x): return n*x if (n<2) else 2*(-1)^(n+1)*p(n-1,x) + (1+x^2)*p(n-2,x)
%o def A135685(n,k): return ( p(n,x) ).series(x,n+1).list()[k]
%o flatten([[A135685(n,k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Nov 26 2021
%Y Cf. A095704, A162590.
%K tabf,sign
%O 0,5
%A _Roger L. Bagula_, Feb 17 2008
%E Prepended first term and offset corrected by _James Burling_, Sep 14 2014