login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273055
a(n) = Sum_{k=0..n} binomial(2*k, k) * binomial(2*n+1, 2*k).
6
1, 7, 51, 393, 3139, 25653, 212941, 1787607, 15134931, 128996853, 1105350729, 9513228123, 82176836301, 712070156203, 6186675630819, 53876592856681, 470139239360787, 4109922421017093, 35986168879543609, 315544068167601787, 2770417140954208377, 24352194654450483759
OFFSET
0,2
COMMENTS
These are the central coefficients of the trinomial irregular triangle A027907 [Comtet, pp. 77-78, with references] for odd-indexed rows. For the central coefficients of the even-indexed rows see A082758. - Wolfdieter Lang, Apr 19 2018
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974., pp. 77-78. (In the integral formula on p. 77, a left bracket is missing for the cosine argument.)
LINKS
FORMULA
a(n) = 4^(2*n+1)*JacobiP(2*n+1, -2*n-3/2, -2*n-3/2, -1/2).
a(n) = GegenbauerC(2*n+1, -2*n-1, -1/2).
a(n) = hypergeom([-n-1/2, -n], [1], 4).
a(n) = (2*n+1)!*( [x^(2*n+1)] exp(x)*BesselI(0,2*x) ).
a(n) = [x^(2*n+1)] (1-2*x-3*x^2)^(-1/2).
a(n) = [x^(2*n+1)] (1+x+x^2)^(2*n+1).
a(n) = ((4*n-1)*(20*n^2-10*n-3)*a(n-1)-9*(n-1)*(2*n-1)*(4*n+1)*a(n-2))/(n*(2*n+1)*(4*n-3)) for n>1.
a(n) = A002426(2*n+1).
a(n) ~ 3^(2*n + 3/2) / sqrt(8*Pi*n). - Vaclav Kotesovec, Feb 16 2017
From Peter Bala, Mar 16 2018: (Start)
a(n) = sqrt(-3)^(2*n+1)*P(2*n+1,1/sqrt(-3)), where P(n,x) is the Legendre polynomia1 of degree n.
a(n) = 1/C(2*n+1,n)*Sum_{k = 0..n} C(n,k)*C(n+k+1,k)* C(2*n+2*k+1,n+k+1)*(-3)^(n-k). Cf. A082758.
a(n) = (-3)^n*hypergeom([-n, n + 3/2], [1], 4/3).
(End)
From Wolfdieter Lang, Apr 19 2018: (Start)
a(n) = (2/Pi)*Integral_{phi = 0..Pi/2} (sin(3*phi))/sin(phi))^(2*n+1) [Comtet, p. 77, q = 3, n = k -> 2*n+1] = (2/Pi)*Integral_{x=0..2} (x^2 - 1)^(2*n+1) / sqrt(4-x^2) (with x = 2*cos(phi).
a(n) = 3^(2*n+1)*Sum_{k=0..2*n+1} binomial(2*n+1, k)*binomial(2*k, k)*(-1/3)^k = 3^(2*n+1)*hypergeometric([-(2*n+1), 1/2], [1], 4/3). See the version in Bala's formulas, also for the Legendre polynomial version. (End)
G.f.: sqrt( 2 / ((1-10*x+9*x^2)*(1-3*x+sqrt(1-10*x+9*x^2))) ). - Seiichi Manyama, Aug 25 2020
MAPLE
a := n -> GegenbauerC(2*n+1, -2*n-1, -1/2): seq(simplify(a(n)), n=0..21);
MATHEMATICA
Table[Hypergeometric2F1[-n-1/2, -n, 1, 4], {n, 0, 21}]
Table[GegenbauerC[2 n + 1, -2 n - 1, -1/2], {n, 0, 21}] (* Michael De Vlieger, May 14 2016 *)
PROG
(Sage)
def a():
a, b, n = 1, 7, 2
yield a
while True:
yield b
a, b = b, ((4*n-1)*(20*n^2-10*n-3)*b-9*(n-1)*(2*n-1)*(4*n+1)*a)//(n*(2*n+1)*(4*n-3))
n += 1
A = a()
[next(A) for i in range(22)]
(PARI) a(n) = sum(k=0, n, binomial(2*k, k) * binomial(2*n+1, 2*k)); \\ Michel Marcus, Mar 01 2020
(PARI) N=40; x='x+O('x^N); Vec(sqrt(2/((1-10*x+9*x^2)*(1-3*x+sqrt(1-10*x+9*x^2))))) \\ Seiichi Manyama, Aug 25 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, May 14 2016
STATUS
approved