Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #55 Aug 25 2020 19:26:51
%S 1,7,51,393,3139,25653,212941,1787607,15134931,128996853,1105350729,
%T 9513228123,82176836301,712070156203,6186675630819,53876592856681,
%U 470139239360787,4109922421017093,35986168879543609,315544068167601787,2770417140954208377,24352194654450483759
%N a(n) = Sum_{k=0..n} binomial(2*k, k) * binomial(2*n+1, 2*k).
%C These are the central coefficients of the trinomial irregular triangle A027907 [Comtet, pp. 77-78, with references] for odd-indexed rows. For the central coefficients of the even-indexed rows see A082758. - _Wolfdieter Lang_, Apr 19 2018
%D L. Comtet, Advanced Combinatorics, Reidel, 1974., pp. 77-78. (In the integral formula on p. 77, a left bracket is missing for the cosine argument.)
%H Indranil Ghosh, <a href="/A273055/b273055.txt">Table of n, a(n) for n = 0..826</a>
%F a(n) = 4^(2*n+1)*JacobiP(2*n+1, -2*n-3/2, -2*n-3/2, -1/2).
%F a(n) = GegenbauerC(2*n+1, -2*n-1, -1/2).
%F a(n) = hypergeom([-n-1/2, -n], [1], 4).
%F a(n) = (2*n+1)!*( [x^(2*n+1)] exp(x)*BesselI(0,2*x) ).
%F a(n) = [x^(2*n+1)] (1-2*x-3*x^2)^(-1/2).
%F a(n) = [x^(2*n+1)] (1+x+x^2)^(2*n+1).
%F a(n) = ((4*n-1)*(20*n^2-10*n-3)*a(n-1)-9*(n-1)*(2*n-1)*(4*n+1)*a(n-2))/(n*(2*n+1)*(4*n-3)) for n>1.
%F a(n) = A002426(2*n+1).
%F a(n) ~ 3^(2*n + 3/2) / sqrt(8*Pi*n). - _Vaclav Kotesovec_, Feb 16 2017
%F From _Peter Bala_, Mar 16 2018: (Start)
%F a(n) = sqrt(-3)^(2*n+1)*P(2*n+1,1/sqrt(-3)), where P(n,x) is the Legendre polynomia1 of degree n.
%F a(n) = 1/C(2*n+1,n)*Sum_{k = 0..n} C(n,k)*C(n+k+1,k)* C(2*n+2*k+1,n+k+1)*(-3)^(n-k). Cf. A082758.
%F a(n) = (-3)^n*hypergeom([-n, n + 3/2], [1], 4/3).
%F (End)
%F From _Wolfdieter Lang_, Apr 19 2018: (Start)
%F a(n) = (2/Pi)*Integral_{phi = 0..Pi/2} (sin(3*phi))/sin(phi))^(2*n+1) [Comtet, p. 77, q = 3, n = k -> 2*n+1] = (2/Pi)*Integral_{x=0..2} (x^2 - 1)^(2*n+1) / sqrt(4-x^2) (with x = 2*cos(phi).
%F a(n) = 3^(2*n+1)*Sum_{k=0..2*n+1} binomial(2*n+1, k)*binomial(2*k, k)*(-1/3)^k = 3^(2*n+1)*hypergeometric([-(2*n+1), 1/2], [1], 4/3). See the version in Bala's formulas, also for the Legendre polynomial version. (End)
%F G.f.: sqrt( 2 / ((1-10*x+9*x^2)*(1-3*x+sqrt(1-10*x+9*x^2))) ). - _Seiichi Manyama_, Aug 25 2020
%p a := n -> GegenbauerC(2*n+1, -2*n-1, -1/2): seq(simplify(a(n)), n=0..21);
%t Table[Hypergeometric2F1[-n-1/2, -n, 1, 4], {n, 0, 21}]
%t Table[GegenbauerC[2 n + 1, -2 n - 1, -1/2], {n, 0, 21}] (* _Michael De Vlieger_, May 14 2016 *)
%o (Sage)
%o def a():
%o a, b, n = 1, 7, 2
%o yield a
%o while True:
%o yield b
%o a, b = b, ((4*n-1)*(20*n^2-10*n-3)*b-9*(n-1)*(2*n-1)*(4*n+1)*a)//(n*(2*n+1)*(4*n-3))
%o n += 1
%o A = a()
%o [next(A) for i in range(22)]
%o (PARI) a(n) = sum(k=0, n, binomial(2*k, k) * binomial(2*n+1, 2*k)); \\ _Michel Marcus_, Mar 01 2020
%o (PARI) N=40; x='x+O('x^N); Vec(sqrt(2/((1-10*x+9*x^2)*(1-3*x+sqrt(1-10*x+9*x^2))))) \\ _Seiichi Manyama_, Aug 25 2020
%Y Cf. A002426, A027907, A082758.
%K nonn,easy
%O 0,2
%A _Peter Luschny_, May 14 2016