login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273052
Numbers n such that 7*n^2 + 8 is a square.
3
2, 34, 542, 8638, 137666, 2194018, 34966622, 557271934, 8881384322, 141544877218, 2255836651166, 35951841541438, 572973628011842, 9131626206648034, 145533045678356702, 2319397104647059198, 36964820628674590466, 589117732954146388258, 9388918906637667621662
OFFSET
1,1
FORMULA
O.g.f.: x*(2 + 2*x)/(1 - 16*x + x^2).
E.g.f.: 2*(1 + (3*sqrt(7)*sinh(3*sqrt(7)*x) - 7*cosh(3*sqrt(7)*x))*exp(8*x)/7). - Ilya Gutkovskiy, May 14 2016
a(n) = 16*a(n-1) - a(n-2).
a(n) = (-(8-3*sqrt(7))^n*(3+sqrt(7))-(-3+sqrt(7))*(8+3*sqrt(7))^n)/sqrt(7). - Colin Barker, May 14 2016
MATHEMATICA
LinearRecurrence[{16, -1}, {2, 34}, 30]
PROG
(Magma) I:=[2, 34]; [n le 2 select I[n] else 16*Self(n-1)-Self(n-2): n in [1..30]];
(PARI) Vec(x*(2+2*x)/(1-16*x+x^2) + O(x^50)) \\ Colin Barker, May 14 2016
CROSSREFS
Cf. Numbers n such that k*n^2+(k+1) is a square: A052530 (k=3), this sequence (k=7), A106328 (k=8), A106256 (k=12), A273053 (k=15), A273054 (k=19), A106331 (k=24).
Sequence in context: A104898 A218432 A071799 * A098704 A119298 A045585
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 14 2016
STATUS
approved