The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273050 Numbers k such that ror(k) XOR rol(k) = k, where ror(x)=A038572(x) is x rotated one binary place to the right, rol(x)=A006257(x) is x rotated one binary place to the left, and XOR is the binary exclusive-or operator. 0
 0, 5, 6, 45, 54, 365, 438, 2925, 3510, 23405, 28086, 187245, 224694, 1497965, 1797558, 11983725, 14380470, 95869805, 115043766, 766958445, 920350134, 6135667565, 7362801078, 49085340525, 58902408630, 392682724205, 471219269046 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Table of n, a(n) for n=1..27. FORMULA Conjectures from Colin Barker, May 22 2016: (Start) a(n) = (-11+(-1)^n+2^(-1/2+(3*n)/2)*(3-3*(-1)^n+5*sqrt(2)+5*(-1)^n*sqrt(2)))/14. a(n) = 5*(2^(3*n/2)-1)/7 for n even. a(n) = 3*(2^((3*n)/2-1/2)-2)/7 for n odd. a(n) = 9*a(n-2)-8*a(n-4) for n>4. G.f.: x^2*(5+6*x) / ((1-x)*(1+x)*(1-8*x^2)). (End) MATHEMATICA ok[n_] := Block[{x = IntegerDigits[n, 2]}, x == BitXor @@@ Transpose@ {RotateLeft@ x, RotateRight@ x}]; Select[ Range[0, 10^5], ok] (* Giovanni Resta, May 14 2016 *) ok[n_] := Block[{x = IntegerDigits[n, 2]}, x == BitXor @@@ Transpose[ {RotateLeft[x], RotateRight[x]}]]; Select[LinearRecurrence[{0, 9, 0, -8}, {0, 5, 6, 45}, 100], ok] (* Jean-François Alcover, May 22 2016, after Giovanni Resta *) PROG (Python) def ROR(n): # returns A038572(n) BL = len(bin(n))-2 return (n>>1) + ((n&1) << (BL-1)) def ROL(n): # returns A006257(n) for n>0 BL = len(bin(n))-2 return (n*2) - (1<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 20:45 EDT 2024. Contains 372758 sequences. (Running on oeis4.)