Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Sep 08 2022 08:46:16
%S 2,34,542,8638,137666,2194018,34966622,557271934,8881384322,
%T 141544877218,2255836651166,35951841541438,572973628011842,
%U 9131626206648034,145533045678356702,2319397104647059198,36964820628674590466,589117732954146388258,9388918906637667621662
%N Numbers n such that 7*n^2 + 8 is a square.
%H Colin Barker, <a href="/A273052/b273052.txt">Table of n, a(n) for n = 1..800</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (16,-1).
%F O.g.f.: x*(2 + 2*x)/(1 - 16*x + x^2).
%F E.g.f.: 2*(1 + (3*sqrt(7)*sinh(3*sqrt(7)*x) - 7*cosh(3*sqrt(7)*x))*exp(8*x)/7). - _Ilya Gutkovskiy_, May 14 2016
%F a(n) = 16*a(n-1) - a(n-2).
%F a(n) = (-(8-3*sqrt(7))^n*(3+sqrt(7))-(-3+sqrt(7))*(8+3*sqrt(7))^n)/sqrt(7). - _Colin Barker_, May 14 2016
%t LinearRecurrence[{16, -1}, {2, 34}, 30]
%o (Magma) I:=[2,34]; [n le 2 select I[n] else 16*Self(n-1)-Self(n-2): n in [1..30]];
%o (PARI) Vec(x*(2+2*x)/(1-16*x+x^2) + O(x^50)) \\ _Colin Barker_, May 14 2016
%Y Cf. Numbers n such that k*n^2+(k+1) is a square: A052530 (k=3), this sequence (k=7), A106328 (k=8), A106256 (k=12), A273053 (k=15), A273054 (k=19), A106331 (k=24).
%K nonn,easy
%O 1,1
%A _Vincenzo Librandi_, May 14 2016