OFFSET
0,4
COMMENTS
a(n) is prime for n = {3, 5, 17, 157} = A056826(n) Primes p such that (p^p + 1)/(p + 1) is a prime. Prime a(n) are {7, 521, 45957792327018709121, ...}. Bisection of a(n) is Sierpinski quotient a(2n-1) = A124899(n) = ((2n-1)^(2n-1) + 1)/(2n) = A014566(2n-1)/(2n). - Alexander Adamchuk, Nov 12 2006
This is related to the dimension of the primitive middle cohomology of Dwork hypersurfaces x1**n+x2**n+...+xn**n=n*psi*x1*x2*...*xn. [F. Chapoton, Dec 11 2009]
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..387
Philippe Goutet, Isotypic Decomposition of the Cohomology and Factorization of the Zeta Functions of Dwork Hypersurfaces, arXiv:0912.2075 [math.NT], 2009.
MAPLE
a:= n-> (n^n-(-1)^n)/(n+1):
seq(a(n), n=0..20); # Alois P. Heinz, May 11 2023
PROG
(Sage) [((n - 1)**(n - 1) + (-1)**n) // n for n in range(1, 16)]
(PARI) a(n) = (n^n-(-1)^n)/(n+1); \\ Michel Marcus, Jul 29 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 17 2003
EXTENSIONS
Edited by F. Chapoton, Feb 03 2011
STATUS
approved