login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304359
Antidiagonal sums of the second quadrant of array A(k,m) = F_k(m), F_k(m) being the k-th Fibonacci polynomial evaluated at m.
4
0, 1, 1, 1, 1, 1, 0, 2, 1, -10, 39, -58, -166, 1611, -6311, 10083, 54195, -565257, 2727568, -6102368, -26464605, 394614352, -2515452801, 8797315672, 11441288836, -458369484247, 4097437715969, -21769011878335, 36715605929957, 703213495381553, -10042075731879152
OFFSET
0,8
COMMENTS
Equivalently, antidiagonal sums of the fourth quadrant of array A(k,m).
FORMULA
a(n) = Sum_{j=0..n} F_j(j-n).
MAPLE
F:= (n, k)-> (<<0|1>, <1|k>>^n)[1, 2]:
a:= n-> add(F(-j, n-j), j=0..n):
seq(a(n), n=0..30);
# second Maple program:
F:= proc(n, k) option remember;
`if`(n<2, n, k*F(n-1, k)+F(n-2, k))
end:
a:= n-> add(F(j, j-n), j=0..n):
seq(a(n), n=0..30);
# third Maple program:
a:= n-> add(combinat[fibonacci](j, j-n), j=0..n):
seq(a(n), n=0..30);
MATHEMATICA
a[n_] := Sum[Fibonacci[j, j - n], {j, 0, n}];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 02 2018, from 3rd Maple program *)
CROSSREFS
KEYWORD
sign
AUTHOR
Alois P. Heinz, May 11 2018
STATUS
approved