login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336729
G.f. A(x) satisfies: A(x) = 1 + x * A(x) / (1 + 3 * x * A(x)).
3
1, 1, -2, 1, 10, -38, 28, 289, -1262, 1054, 11044, -51302, 45604, 482068, -2319176, 2140129, 22753378, -111964106, 105927508, 1130780062, -5652760340, 5444054956, 58291068808, -294808277414, 287740874260, 3088109246572, -15758505143192, 15541351662484, 167103084713608
OFFSET
0,3
LINKS
FORMULA
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} (-3)^(n-k) * binomial(n,k) * binomial(n,k-1) for n > 0.
G.f.: 2/(1 - 4*x + sqrt(1 + 4*x + 16*x^2)).
a(n) = Sum_{k=0..n} (-3)^k * 4^(n-k) * binomial(n,k) * binomial(n+k,n)/(k+1).
(n+1) * a(n) = -2 * (2*n-1) * a(n-1) - 16 * (n-2) * a(n-2) for n>1. - Seiichi Manyama, Aug 08 2020
a(n) ~ 2^(2*n - 1/2) * ((sqrt(3) + 1)*sin(2*Pi*n/3) + (sqrt(3) - 1)*cos(2*Pi*n/3)) / (3^(3/4) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Dec 04 2020
MATHEMATICA
a[0] = 1; a[n_] := Sum[(-3)^(n - k) * Binomial[n, k] * Binomial[n , k - 1], {k, 1, n}] / n; Array[a, 29, 0] (* Amiram Eldar, Aug 02 2020 *)
PROG
(PARI) {a(n) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A/(1+3*x*A)); polcoef(A, n)}
(PARI) {a(n) = if(n==0, 1, sum(k=1, n, (-3)^(n-k)*binomial(n, k)*binomial(n, k-1))/n)}
(PARI) N=40; x='x+O('x^N); Vec(2/(1-4*x+sqrt(1+4*x+16*x^2)))
(PARI) {a(n) = sum(k=0, n, (-3)^k*4^(n-k)*binomial(n, k)*binomial(n+k, n)/(k+1))}
CROSSREFS
Column k=3 of A336727.
Sequence in context: A309234 A071926 A133103 * A304359 A054781 A213421
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 02 2020
STATUS
approved