login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304357
Antidiagonal sums of the first quadrant of array A(k,m) = F_k(m), F_k(m) being the k-th Fibonacci polynomial evaluated at m.
5
0, 1, 1, 3, 5, 13, 32, 94, 297, 1036, 3911, 15918, 69350, 321779, 1582745, 8220349, 44925187, 257563819, 1544896976, 9671289892, 63051738167, 427254561854, 3003872526303, 21876513464296, 164790822258172, 1282198404741305, 10292007232817249, 85126350266370355
OFFSET
0,4
COMMENTS
Equivalently, antidiagonal sums of the third quadrant of array A(k,m).
It seems that: a(n+1) is the sum of the n-th antidiagonal of triangle A101494; a(n)-(n mod 2) is the sum of the n-th antidiagonal of array A172236; and a(n+1)+(n mod 2) is the sum of row n of triangle A157103. - Mathew Englander, Feb 28 2021
FORMULA
a(n) = Sum_{j=0..n} F_j(n-j).
a(n+1) = Sum_{j = 0..n} Sum_{i = j..floor((n+j)/2)} binomial(i,j)*(n+j-2*i)^j (empirically). - Mathew Englander, Feb 28 2021
MAPLE
F:= (n, k)-> (<<0|1>, <1|k>>^n)[1, 2]:
a:= n-> add(F(j, n-j), j=0..n):
seq(a(n), n=0..30);
# second Maple program:
F:= proc(n, k) option remember;
`if`(n<2, n, k*F(n-1, k)+F(n-2, k))
end:
a:= n-> add(F(j, n-j), j=0..n):
seq(a(n), n=0..30);
# third Maple program:
a:= n-> add(combinat[fibonacci](j, n-j), j=0..n):
seq(a(n), n=0..30);
MATHEMATICA
a[n_] := Sum[Fibonacci[j, n - j], {j, 0, n}];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 02 2018, from 3rd Maple program *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 11 2018
STATUS
approved