login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Antidiagonal sums of the second quadrant of array A(k,m) = F_k(m), F_k(m) being the k-th Fibonacci polynomial evaluated at m.
4

%I #18 Jun 02 2018 14:18:35

%S 0,1,1,1,1,1,0,2,1,-10,39,-58,-166,1611,-6311,10083,54195,-565257,

%T 2727568,-6102368,-26464605,394614352,-2515452801,8797315672,

%U 11441288836,-458369484247,4097437715969,-21769011878335,36715605929957,703213495381553,-10042075731879152

%N Antidiagonal sums of the second quadrant of array A(k,m) = F_k(m), F_k(m) being the k-th Fibonacci polynomial evaluated at m.

%C Equivalently, antidiagonal sums of the fourth quadrant of array A(k,m).

%H Alois P. Heinz, <a href="/A304359/b304359.txt">Table of n, a(n) for n = 0..616</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Fibonacci_polynomials">Fibonacci polynomials</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Quadrant_(plane_geometry)">Quadrant (plane geometry)</a>

%F a(n) = Sum_{j=0..n} F_j(j-n).

%p F:= (n, k)-> (<<0|1>, <1|k>>^n)[1, 2]:

%p a:= n-> add(F(-j, n-j), j=0..n):

%p seq(a(n), n=0..30);

%p # second Maple program:

%p F:= proc(n, k) option remember;

%p `if`(n<2, n, k*F(n-1, k)+F(n-2, k))

%p end:

%p a:= n-> add(F(j, j-n), j=0..n):

%p seq(a(n), n=0..30);

%p # third Maple program:

%p a:= n-> add(combinat[fibonacci](j, j-n), j=0..n):

%p seq(a(n), n=0..30);

%t a[n_] := Sum[Fibonacci[j, j - n], {j, 0, n}];

%t Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Jun 02 2018, from 3rd Maple program *)

%Y Cf. A000045, A084844, A304357.

%K sign

%O 0,8

%A _Alois P. Heinz_, May 11 2018