login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114906
Triangle where a(1,1) = 1; a(n,m) = number of terms in row (n-1) which, when added to m, are primes.
4
1, 1, 1, 2, 2, 0, 2, 1, 3, 0, 2, 3, 2, 2, 2, 4, 1, 4, 1, 4, 0, 5, 3, 4, 2, 1, 2, 4, 5, 3, 4, 2, 2, 2, 2, 2, 6, 2, 6, 1, 5, 1, 1, 2, 6, 8, 4, 2, 3, 5, 4, 3, 1, 2, 3, 5, 5, 5, 4, 3, 2, 2, 4, 5, 4, 3, 5, 6, 5, 2, 2, 4, 3, 6, 5, 2, 2, 4, 8, 4, 6, 1, 6, 3, 4, 4, 6, 1, 6, 3, 4, 10, 4, 5, 4, 5, 2, 8, 2, 5, 4, 5, 2, 8, 2
OFFSET
1,4
COMMENTS
Rows n >= 6 are identical to those in A114905. - R. J. Mathar, Mar 13 2007
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11476 (rows 1 <= n <= 150).
EXAMPLE
Row 4 of the triangle is [2,1,3,0]. Adding 1 to these gives [3,2,4,1], of which 2 terms are primes. Adding 2 to these gives [4,3,5,2], of which 3 terms are primes. Adding 3 to these gives [5,4,6,3], of which 2 terms are primes. Adding 4 to these gives [6,5,7,4], of which 2 terms are primes. And adding 5 to these gives [7,6,8,5], of which 2 terms are primes. So row 5 is [2,3,2,2,2].
MAPLE
A114906 := proc(rowmax) local a, n, m, t ; a := matrix(rowmax, rowmax) ; a[1, 1] := 1 ; for n from 2 to rowmax do for m from 1 to n do a[n, m] := 0 ; for t from 1 to n-1 do if isprime( m+a[n-1, t] ) then a[n, m] := a[n, m]+1 ; fi ; od ; od ; od ; RETURN(a) ; end: rowmax := 15 : a := A114906(rowmax) : for n from 1 to rowmax do for m from 1 to n do printf("%d, ", a[n, m]) ; od ; od ; # R. J. Mathar, Mar 13 2007
MATHEMATICA
NestList[Function[w, Map[Function[k, Count[Map[k + # &, w], _?PrimeQ]], Range[Length@ w + 1]]], {1}, 13] // Flatten (* Michael De Vlieger, Sep 06 2017 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Leroy Quet, Jan 06 2006
EXTENSIONS
More terms from R. J. Mathar, Mar 13 2007
STATUS
approved