login
A254101
Square array A(row,col) = A000265(A254051(row,col)).
5
1, 3, 1, 1, 1, 5, 3, 11, 23, 7, 7, 17, 1, 17, 41, 9, 5, 25, 95, 203, 61, 5, 13, 59, 149, 71, 19, 365, 3, 29, 77, 11, 223, 851, 1823, 547, 13, 35, 43, 115, 527, 1337, 319, 1367, 3281, 15, 19, 13, 257, 689, 395, 2005, 7655, 16403, 4921, 1, 11, 113, 311, 385, 1033, 4739, 12029, 5741, 6151, 29525
OFFSET
1,2
COMMENTS
Starting with an odd number x = A135765(row,col), the result after one combined Collatz step (3x+1)/2 is found in A254051(row+1,col), and after iterated [i.e., we divide all powers of 2 out] Collatz step: x_new <- A139391(x) = A000265(3x+1) the resulting odd number x_new is located at the first row of array A135764 as x_new = A135764(1,A254055(row+1,col)) and it is given here as A(row+1,col) = A000265(A254051(row+1,col)).
That number's column index in array A135765 is then given by A254102(row+1,col).
FORMULA
A(row,col) = A000265(A254051(row,col)).
A(row,col) = (2*A254055(row,col))-1.
A(row,col) = A003961(A254055(row, A249745(col))).
A(row+1,col) = A139391(A135765(row,col)).
As compositions of one-dimensional sequences:
a(n) = A000265(A254051(n)).
a(n) = (2*A254055(n))-1.
EXAMPLE
The top left corner of the array:
1, 3, 1, 3, 7, 9, 5, 3, 13, 15, 1, ...
1, 1, 11, 17, 5, 13, 29, 35, 19, 11, 47, ...
5, 23, 1, 25, 59, 77, 43, 13, 113, 131, 35, ...
7, 17, 95, 149, 11, 115, 257, 311, 169, 49, 419, ...
41, 203, 71, 223, 527, 689, 385, 233, 1013, 1175, 157, ...
61, 19, 851, 1337, 395, 1033, 2309, 2795, 1519, 881, 3767, ...
365, 1823, 319, 2005, 4739, 6197, 3463, 131, 9113, 10571, 2825, ...
547, 1367, 7655, 12029, 1777, 9295, 20777, 25151, 13669, 991, 33899, ...
etc.
PROG
(Scheme)
(define (A254101 n) (A254101bi (A002260 n) (A004736 n)))
(define (A254101bi row col) (+ -1 (* 2 (A254055bi row col))))
;; Alternative definition:
(define (A254101v2 n) (A254101biv2 (A002260 n) (A004736 n)))
(define (A254101biv2 row col) (A003961 (A254055bi row (A249745 col))))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Jan 28 2015
STATUS
approved