login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349025
a(n) is multiplicative with a(p^e) = Sum_{d||e} p^(e-d), where d||e are the unitary divisors of e.
2
1, 1, 1, 3, 1, 1, 1, 5, 4, 1, 1, 3, 1, 1, 1, 9, 1, 4, 1, 3, 1, 1, 1, 5, 6, 1, 10, 3, 1, 1, 1, 17, 1, 1, 1, 12, 1, 1, 1, 5, 1, 1, 1, 3, 4, 1, 1, 9, 8, 6, 1, 3, 1, 10, 1, 5, 1, 1, 1, 3, 1, 1, 4, 57, 1, 1, 1, 3, 1, 1, 1, 20, 1, 1, 6, 3, 1, 1, 1, 9, 28, 1, 1, 3, 1
OFFSET
1,4
COMMENTS
First differs from A348963 at n = 16.
A number k is an exponential unitary harmonic number (A349026) if and only if a(k) | k * A278908(k).
LINKS
Nicuşor Minculete, Contribuţii la studiul proprietăţilor analitice ale funcţiilor aritmetice - Utilizarea e-divizorilor, Ph.D. thesis, Academia Română, 2012. See section 4.3, pp. 90-94.
FORMULA
a(n) = 1 if and only if n is squarefree (A005117).
MATHEMATICA
f[p_, e_] := DivisorSum[e, p^(e - #) &, CoprimeQ[#, e/#] &]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
CROSSREFS
The unitary version of A348963.
Sequence in context: A369180 A351565 A254101 * A348963 A350470 A277604
KEYWORD
nonn,mult
AUTHOR
Amiram Eldar, Nov 06 2021
STATUS
approved