login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349024
G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^4)^3.
1
1, 3, 18, 124, 951, 7764, 66200, 582594, 5252133, 48254668, 450186720, 4253328540, 40612877001, 391300954065, 3799506069816, 37142836241690, 365255937037437, 3610755090793272, 35861607622930556, 357670540310182842, 3580797575489620740
OFFSET
0,2
FORMULA
If g.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*n-(t-1)*(k-1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
PROG
(PARI) a(n, s=4, t=3) = sum(k=0, n, binomial(t*n-(t-1)*(k-1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 06 2021
STATUS
approved