login
A371483
G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1-x))^3.
5
1, 3, 18, 124, 933, 7446, 61943, 531348, 4666425, 41751325, 379230711, 3487769871, 32414437521, 303950138604, 2872137458010, 27322233357964, 261446381792670, 2514851398148595, 24303030755342128, 235841264063844258, 2297278004837062317
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(n-1,n-k) * binomial(4*k+2,k)/(k+1).
G.f.: A(x) = B(x/(1-x)), where B(x) = (1/x) * Series_Reversion( x*(1-x)^3 ).
G.f.: A(x) = B(x)^3 where B(x) is the g.f. of A349331.
PROG
(PARI) a(n) = sum(k=0, n, binomial(n-1, n-k)*binomial(4*k+2, k)/(k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 25 2024
STATUS
approved