OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..420
Peter Luschny, A sequence transformation and the Bernoulli numbers.
FORMULA
a(n) = Sum_{k=0..n} (k mod 2) abs(Stirling1(k+1, 2)*Stirling2(n+1, k+1)).
EXAMPLE
Let W(n, k) be the Worpitzky numbers and H(n) the harmonic numbers.
a(3) = W(3,1)H(1) + W(3,3)H(3) = 7*1 + 6*(11/6) = 18.
MAPLE
A176277 := proc(n) local k; add((k mod 2)*T176276(n, k), k=0..n) end;
MATHEMATICA
a[1] = 1; a[n_]:= Sum[ StirlingS2[n+1, k+1]*k!*HarmonicNumber[k], {k, 0, n, 2}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 30 2013 *)
PROG
(PARI) a(n) = if(n<2, n, sum(k=0, n, k!*stirling(n+1, k+1, 2)*sum(j=1, k, 1/j)) ); \\ G. C. Greubel, Nov 24 2019
(Magma) [n lt 2 select n else (&+[Abs(StirlingFirst(k+1, 2)*StirlingSecond(n+1, k+1)): k in [0..n]])/2: n in [0..25]];
(Sage)
def a(n):
if (n<2): return n
else: return sum( factorial(k)*stirling_number1(n+1, k+1)*harmonic_number(k) for k in (0..n))/2
[a(n) for n in (0..25)] # G. C. Greubel, Nov 24 2019
(GAP)
a:= function(n)
if n<2 then return n;
else return Sum([0..n], k-> AbsInt(Stirling1(k+1, 2) * Stirling2(n+1, k+1)))/2;
fi; end;
List([0..25], n-> a(n)); # G. C. Greubel, Nov 24 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Peter Luschny, Apr 14 2010
STATUS
approved