login
A176276
Worpitzky(n, k)*Harmonic(k), triangle read by rows.
2
0, 0, 1, 0, 3, 3, 0, 7, 18, 11, 0, 15, 75, 110, 50, 0, 31, 270, 715, 750, 274, 0, 63, 903, 3850, 7000, 5754, 1764, 0, 127, 2898, 18711, 52500, 72884, 49392, 13068, 0, 255, 9075, 85470, 347550, 725004, 814968, 470448, 109584, 0, 511, 27990, 375155, 2126250, 6254598, 10372320, 9801000, 4931280, 1026576
OFFSET
0,5
FORMULA
T(n, k) = abs(Stirling1(k+1, 2) * Stirling2(n+1, k+1)).
EXAMPLE
Triangle begins as:
0;
0, 1;
0, 3, 3;
0, 7, 18, 11;
0, 15, 75, 110, 50;
0, 31, 270, 715, 750, 274;
MAPLE
T176276 := proc(n, k) local W, H;
W := proc(n, k) stirling2(n+1, k+1)*k! end:
H := proc(n) local i; add(1/i, i=1..n) end: # H(0) = 0 (empty sum convention)
W(n, k)*H(k) end:
MATHEMATICA
T[n_, k_]:= StirlingS2[n+1, k+1]*k!*HarmonicNumber[k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jul 29 2013 *)
PROG
(PARI) T(n, k) = k!*stirling(n+1, k+1, 2)*sum(j=1, k, 1/j); \\ G. C. Greubel, Nov 24 2019
(Magma) [Abs(StirlingFirst(k+1, 2)*StirlingSecond(n+1, k+1)): k in [0..n], n in [0..10]];
(Sage) [[factorial(k)*stirling_number1(n+1, k+1)*harmonic_number(k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 24 2019
(GAP) Flat(List([0..10], n-> List([0..n], k-> AbsInt(Stirling1(k+1, 2) * Stirling2(n+1, k+1)) ))); # G. C. Greubel, Nov 24 2019
CROSSREFS
Sequence in context: A377147 A164107 A093755 * A200701 A275408 A169670
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Luschny, Apr 14 2010
STATUS
approved