OFFSET
0,2
COMMENTS
Hankel transform is A176281.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(2*(n-k),n-k)/C(2*k,k).
From Vaclav Kotesovec, Oct 21 2012: (Start)
G.f.: sqrt(1-4*x)/(1-4*x-x^2).
Recurrence: n*a(n) = 2*(4*n-3)*a(n-1) - 3*(5*n-8)*a(n-2) - 2*(2*n-3)*a(n-3).
a(n) ~ (2+sqrt(5))^n/(2*sqrt(5)). (End)
MAPLE
seq(coeff(series(sqrt(1-4*x)/(1-4*x-x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 24 2019
MATHEMATICA
CoefficientList[Series[Sqrt[1-4*x]/(1-4*x-x^2), {x, 0, 30}], x] (* Vaclav Kotesovec, Oct 21 2012 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(sqrt(1-4*x)/(1-4*x-x^2)) \\ G. C. Greubel, Nov 24 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt(1-4*x)/(1-4*x-x^2) )); // G. C. Greubel, Nov 24 2019
(Sage)
def A176280_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( sqrt(1-4*x)/(1-4*x-x^2) ).list()
A176280_list(30) # G. C. Greubel, Nov 24 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Apr 14 2010
STATUS
approved