login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176280
Diagonal sums of number triangle A046521.
4
1, 2, 7, 26, 101, 402, 1625, 6638, 27319, 113054, 469811, 1958706, 8187063, 34290934, 143864999, 604402050, 2542083509, 10702020746, 45090876913, 190110250998, 801997354525, 3384971428258, 14292950533517, 60373808435046, 255102065046401, 1078202260326002
OFFSET
0,2
COMMENTS
Hankel transform is A176281.
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(2*(n-k),n-k)/C(2*k,k).
From Vaclav Kotesovec, Oct 21 2012: (Start)
G.f.: sqrt(1-4*x)/(1-4*x-x^2).
Recurrence: n*a(n) = 2*(4*n-3)*a(n-1) - 3*(5*n-8)*a(n-2) - 2*(2*n-3)*a(n-3).
a(n) ~ (2+sqrt(5))^n/(2*sqrt(5)). (End)
MAPLE
seq(coeff(series(sqrt(1-4*x)/(1-4*x-x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 24 2019
MATHEMATICA
CoefficientList[Series[Sqrt[1-4*x]/(1-4*x-x^2), {x, 0, 30}], x] (* Vaclav Kotesovec, Oct 21 2012 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(sqrt(1-4*x)/(1-4*x-x^2)) \\ G. C. Greubel, Nov 24 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt(1-4*x)/(1-4*x-x^2) )); // G. C. Greubel, Nov 24 2019
(Sage)
def A176280_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( sqrt(1-4*x)/(1-4*x-x^2) ).list()
A176280_list(30) # G. C. Greubel, Nov 24 2019
CROSSREFS
Sequence in context: A049775 A101850 A279002 * A349713 A045868 A171711
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Apr 14 2010
STATUS
approved