login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049775
a(n) is the sum of all integers from 2^(n-2)+1 to 2^(n-1).
10
2, 7, 26, 100, 392, 1552, 6176, 24640, 98432, 393472, 1573376, 6292480, 25167872, 100667392, 402661376, 1610629120, 6442483712, 25769869312, 103079346176, 412317122560, 1649267965952, 6597070815232, 26388281163776
OFFSET
2,1
COMMENTS
Name when submitted: Sum of even-indexed terms of n-th row of array T given by A049773 (from Clark Kimberling).
Also sum of integers of which the binary order [A029837] is n: a(n) = Sum_[x | ceiling(log_2(x)) = n ]. E.g., a(7) = 6176 = Apply[Plus, Table[w,{w,65,128}]].
This sequence may be obtained by filling a complete binary tree left-to-right, row by row with the integers onwards from 2 and then collecting the sums of the rows; e.g., 2, 3+4, 5+6+7+8, 9+10+11+12+13+14+15+16, etc. a(n) is then equal to the sum of row n-1. - Carl R. White, Aug 19 2003
If the offset is set to zero, the inverse binomial transform gives A007051 without its leading 1. - R. J. Mathar, Mar 26 2009
FORMULA
a(n) = 2^(n-3)*(3*2^(n-2)+1). - Carl R. White, Aug 19 2003
From Philippe Deléham, Feb 20 2004: (Start)
a(n+1) = 4*a(n) - 2^(n-2); see also A007582.
a(n+1) = 2^(n-2)*A004119(n). (End)
From R. J. Mathar, Mar 26 2009: (Start)
a(n) = 6*a(n-1) - 8*a(n-2).
G.f.: -x^2*(-2+5*x)/((4*x-1)*(2*x-1)). (End)
EXAMPLE
a(2) = 2 = 2.
a(3) = 7 = 3 + 4.
a(4) =26 = 5 + 6 + 7 + 8.
..
MATHEMATICA
LinearRecurrence[{6, -8}, {2, 7}, 30] (* Harvey P. Dale, Mar 04 2013 *)
CROSSREFS
Cf. A049773 (sequence motivating the original definition).
Cf. A049775(n+2) = A007582(n+1) - A007582(n).
Sequence in context: A369489 A273320 A114121 * A101850 A279002 A176280
KEYWORD
nonn
EXTENSIONS
More terms from Michael Somos
Name change by Olivier Gérard, Oct 24 2017
STATUS
approved