OFFSET
2,1
COMMENTS
Name when submitted: Sum of even-indexed terms of n-th row of array T given by A049773 (from Clark Kimberling).
Also sum of integers of which the binary order [A029837] is n: a(n) = Sum_[x | ceiling(log_2(x)) = n ]. E.g., a(7) = 6176 = Apply[Plus, Table[w,{w,65,128}]].
This sequence may be obtained by filling a complete binary tree left-to-right, row by row with the integers onwards from 2 and then collecting the sums of the rows; e.g., 2, 3+4, 5+6+7+8, 9+10+11+12+13+14+15+16, etc. a(n) is then equal to the sum of row n-1. - Carl R. White, Aug 19 2003
If the offset is set to zero, the inverse binomial transform gives A007051 without its leading 1. - R. J. Mathar, Mar 26 2009
LINKS
FORMULA
a(n) = 2^(n-3)*(3*2^(n-2)+1). - Carl R. White, Aug 19 2003
From Philippe Deléham, Feb 20 2004: (Start)
a(n+1) = 4*a(n) - 2^(n-2); see also A007582.
a(n+1) = 2^(n-2)*A004119(n). (End)
From R. J. Mathar, Mar 26 2009: (Start)
a(n) = 6*a(n-1) - 8*a(n-2).
G.f.: -x^2*(-2+5*x)/((4*x-1)*(2*x-1)). (End)
EXAMPLE
a(2) = 2 = 2.
a(3) = 7 = 3 + 4.
a(4) =26 = 5 + 6 + 7 + 8.
..
MATHEMATICA
LinearRecurrence[{6, -8}, {2, 7}, 30] (* Harvey P. Dale, Mar 04 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Michael Somos
Name change by Olivier Gérard, Oct 24 2017
STATUS
approved