OFFSET
1,2
COMMENTS
Principal diagonal of the convolution array A213849. - Clark Kimberling, Jul 04 2012
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
FORMULA
G.f.: x*(1 + x + 2*x^2)/((1-x)^4*(1+x)^2). Pairwise sums of A023855. - Ralf Stephan, May 06 2004
a(n) = Sum_{k=1..n} k*ceiling(k/2). - Vladeta Jovovic, Apr 29 2006
Row sums of triangle A095800^2. - Gary W. Adamson, Dec 12 2007
a(n) = (3 + 10*n + 18*n^2 + 8*n^3 - 3*(-1)^n*(1 + 2*n))/48. - R. J. Mathar, Mar 03 2011
From G. C. Greubel, Dec 12 2019: (Start)
a(n) = m*(3*(n-1)*(n+2) - (m+1)*(4*m-7))/6, where m = floor((n+1)/2).
E.g.f.: ( (3+36*x+42*x^2+8*x^3)*exp(x) - 3*(1-2*x)*exp(-x) )/48. (End)
MAPLE
seq( (3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48, n=1..50); # G. C. Greubel, Dec 12 2019
MATHEMATICA
Table[Floor[(n+1)/2]*(3*(n-1)*(n+2) -(1+Floor[(n+1)/2])*(4*Floor[(n+1)/2]-7))/6, {n, 50}] (* G. C. Greubel, Dec 12 2019 *)
PROG
(PARI) vector(50, n, (3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48) \\ G. C. Greubel, Dec 12 2019
(Magma) [(3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48: n in [1..50]]; // G. C. Greubel, Dec 12 2019
(Sage) [(3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48 for n in (1..50)] # G. C. Greubel, Dec 12 2019
(GAP) List([1..50], n-> (3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48); # G. C. Greubel, Dec 12 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved