login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049778
a(n) = Sum_{k=1..floor((n+1)/2)} T(n,2k-1), array T as in A049777.
5
1, 3, 9, 17, 32, 50, 78, 110, 155, 205, 271, 343, 434, 532, 652, 780, 933, 1095, 1285, 1485, 1716, 1958, 2234, 2522, 2847, 3185, 3563, 3955, 4390, 4840, 5336, 5848, 6409, 6987, 7617, 8265, 8968, 9690, 10470, 11270, 12131
OFFSET
1,2
COMMENTS
Principal diagonal of the convolution array A213849. - Clark Kimberling, Jul 04 2012
FORMULA
G.f.: x*(1 + x + 2*x^2)/((1-x)^4*(1+x)^2). Pairwise sums of A023855. - Ralf Stephan, May 06 2004
a(n) = Sum_{k=1..n} k*ceiling(k/2). - Vladeta Jovovic, Apr 29 2006
Row sums of triangle A095800^2. - Gary W. Adamson, Dec 12 2007
a(n) = (3 + 10*n + 18*n^2 + 8*n^3 - 3*(-1)^n*(1 + 2*n))/48. - R. J. Mathar, Mar 03 2011
From G. C. Greubel, Dec 12 2019: (Start)
a(n) = m*(3*(n-1)*(n+2) - (m+1)*(4*m-7))/6, where m = floor((n+1)/2).
E.g.f.: ( (3+36*x+42*x^2+8*x^3)*exp(x) - 3*(1-2*x)*exp(-x) )/48. (End)
MAPLE
seq( (3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48, n=1..50); # G. C. Greubel, Dec 12 2019
MATHEMATICA
Table[Floor[(n+1)/2]*(3*(n-1)*(n+2) -(1+Floor[(n+1)/2])*(4*Floor[(n+1)/2]-7))/6, {n, 50}] (* G. C. Greubel, Dec 12 2019 *)
PROG
(PARI) vector(50, n, (3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48) \\ G. C. Greubel, Dec 12 2019
(Magma) [(3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48: n in [1..50]]; // G. C. Greubel, Dec 12 2019
(Sage) [(3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48 for n in (1..50)] # G. C. Greubel, Dec 12 2019
(GAP) List([1..50], n-> (3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48); # G. C. Greubel, Dec 12 2019
CROSSREFS
KEYWORD
nonn
STATUS
approved