Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Sep 08 2022 08:44:58
%S 1,3,9,17,32,50,78,110,155,205,271,343,434,532,652,780,933,1095,1285,
%T 1485,1716,1958,2234,2522,2847,3185,3563,3955,4390,4840,5336,5848,
%U 6409,6987,7617,8265,8968,9690,10470,11270,12131
%N a(n) = Sum_{k=1..floor((n+1)/2)} T(n,2k-1), array T as in A049777.
%C Principal diagonal of the convolution array A213849. - _Clark Kimberling_, Jul 04 2012
%H G. C. Greubel, <a href="/A049778/b049778.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-4,1,2,-1).
%F G.f.: x*(1 + x + 2*x^2)/((1-x)^4*(1+x)^2). Pairwise sums of A023855. - _Ralf Stephan_, May 06 2004
%F a(n) = Sum_{k=1..n} k*ceiling(k/2). - _Vladeta Jovovic_, Apr 29 2006
%F Row sums of triangle A095800^2. - _Gary W. Adamson_, Dec 12 2007
%F a(n) = (3 + 10*n + 18*n^2 + 8*n^3 - 3*(-1)^n*(1 + 2*n))/48. - _R. J. Mathar_, Mar 03 2011
%F From _G. C. Greubel_, Dec 12 2019: (Start)
%F a(n) = m*(3*(n-1)*(n+2) - (m+1)*(4*m-7))/6, where m = floor((n+1)/2).
%F E.g.f.: ( (3+36*x+42*x^2+8*x^3)*exp(x) - 3*(1-2*x)*exp(-x) )/48. (End)
%p seq( (3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48, n=1..50); # _G. C. Greubel_, Dec 12 2019
%t Table[Floor[(n+1)/2]*(3*(n-1)*(n+2) -(1+Floor[(n+1)/2])*(4*Floor[(n+1)/2]-7))/6, {n,50}] (* _G. C. Greubel_, Dec 12 2019 *)
%o (PARI) vector(50, n, (3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48) \\ _G. C. Greubel_, Dec 12 2019
%o (Magma) [(3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48: n in [1..50]]; // _G. C. Greubel_, Dec 12 2019
%o (Sage) [(3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48 for n in (1..50)] # _G. C. Greubel_, Dec 12 2019
%o (GAP) List([1..50], n-> (3 +10*n +18*n^2 +8*n^3 -3*(-1)^n*(1+2*n))/48); # _G. C. Greubel_, Dec 12 2019
%Y Cf. A023855, A049777, A095800, A213849.
%K nonn
%O 1,2
%A _Clark Kimberling_